An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In algebraic geometry, the Gabriel–Rosenberg reconstruction theorem, introduced in , states that a quasi-separated scheme can be recovered from the category of quasi-coherent sheaves on it. The theorem is taken as a starting point for noncommutative algebraic geometry as the theorem says (in a sense) working with stuff on a space is equivalent to working with the space itself. It is named after Pierre Gabriel and Alexander L. Rosenberg.

Property Value
dbo:abstract
  • In algebraic geometry, the Gabriel–Rosenberg reconstruction theorem, introduced in , states that a quasi-separated scheme can be recovered from the category of quasi-coherent sheaves on it. The theorem is taken as a starting point for noncommutative algebraic geometry as the theorem says (in a sense) working with stuff on a space is equivalent to working with the space itself. It is named after Pierre Gabriel and Alexander L. Rosenberg. (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 57426815 (xsd:integer)
dbo:wikiPageLength
  • 1340 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1081328751 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In algebraic geometry, the Gabriel–Rosenberg reconstruction theorem, introduced in , states that a quasi-separated scheme can be recovered from the category of quasi-coherent sheaves on it. The theorem is taken as a starting point for noncommutative algebraic geometry as the theorem says (in a sense) working with stuff on a space is equivalent to working with the space itself. It is named after Pierre Gabriel and Alexander L. Rosenberg. (en)
rdfs:label
  • Gabriel–Rosenberg reconstruction theorem (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License