An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In algebra, a free presentation of a module M over a commutative ring R is an exact sequence of R-modules: Note the image under g of the standard basis generates M. In particular, if J is finite, then M is a finitely generated module. If I and J are finite sets, then the presentation is called a finite presentation; a module is called finitely presented if it admits a finite presentation. Since f is a module homomorphism between free modules, it can be visualized as an (infinite) matrix with entries in R and M as its cokernel. For left-exact functors, there is for example

Property Value
dbo:abstract
  • In algebra, a free presentation of a module M over a commutative ring R is an exact sequence of R-modules: Note the image under g of the standard basis generates M. In particular, if J is finite, then M is a finitely generated module. If I and J are finite sets, then the presentation is called a finite presentation; a module is called finitely presented if it admits a finite presentation. Since f is a module homomorphism between free modules, it can be visualized as an (infinite) matrix with entries in R and M as its cokernel. A free presentation always exists: any module is a quotient of a free module: , but then the kernel of g is again a quotient of a free module: . The combination of f and g is a free presentation of M. Now, one can obviously keep "resolving" the kernels in this fashion; the result is called a free resolution. Thus, a free presentation is the early part of the free resolution. A presentation is useful for computation. For example, since tensoring is right-exact, tensoring the above presentation with a module, say N, gives: This says that is the cokernel of . If N is an R-algebra, then this is the presentation of the N-module ; that is, the presentation extends under base extension. For left-exact functors, there is for example Proposition — Let F, G be left-exact contravariant functors from the category of modules over a commutative ring R to abelian groups and θ a natural transformation from F to G. If is an isomorphism for each natural number n, then is an isomorphism for any finitely-presented module M. Proof: Applying F to a finite presentation results in and the same for G. Now apply the snake lemma. (en)
dbo:wikiPageID
  • 46394651 (xsd:integer)
dbo:wikiPageLength
  • 3136 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1117267153 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In algebra, a free presentation of a module M over a commutative ring R is an exact sequence of R-modules: Note the image under g of the standard basis generates M. In particular, if J is finite, then M is a finitely generated module. If I and J are finite sets, then the presentation is called a finite presentation; a module is called finitely presented if it admits a finite presentation. Since f is a module homomorphism between free modules, it can be visualized as an (infinite) matrix with entries in R and M as its cokernel. For left-exact functors, there is for example (en)
rdfs:label
  • Free presentation (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License