An Entity of Type: disease, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In a system of differential equations used to describe a time-dependent process, a forcing function is a function that appears in the equations and is only a function of time, and not of any of the other variables. In effect, it is a constant for each value of t. In the more general case, any nonhomogeneous source function in any variable can be described as a forcing function, and the resulting solution can often be determined using a superposition of linear combinations of the homogeneous solutions and the forcing term.

Property Value
dbo:abstract
  • In a system of differential equations used to describe a time-dependent process, a forcing function is a function that appears in the equations and is only a function of time, and not of any of the other variables. In effect, it is a constant for each value of t. In the more general case, any nonhomogeneous source function in any variable can be described as a forcing function, and the resulting solution can often be determined using a superposition of linear combinations of the homogeneous solutions and the forcing term. For example, is the forcing function in the nonhomogeneous, second-order, ordinary differential equation: (en)
dbo:wikiPageID
  • 21452055 (xsd:integer)
dbo:wikiPageLength
  • 1861 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1114841555 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In a system of differential equations used to describe a time-dependent process, a forcing function is a function that appears in the equations and is only a function of time, and not of any of the other variables. In effect, it is a constant for each value of t. In the more general case, any nonhomogeneous source function in any variable can be described as a forcing function, and the resulting solution can often be determined using a superposition of linear combinations of the homogeneous solutions and the forcing term. (en)
rdfs:label
  • Forcing function (differential equations) (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License