An Entity of Type: organisation, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Flow-accelerated corrosion (FAC), also known as flow-assisted corrosion, is a corrosion mechanism in which a normally protective oxide layer on a metal surface dissolves in a fast flowing water. The underlying metal corrodes to re-create the oxide, and thus the metal loss continues. FAC was the cause of several high-profile accidents in power plants, for example, a rupture of a high-pressure condensate line in Virginia Power's Surry nuclear plant in 1986, that resulted in four fatalities and four injuries.

Property Value
dbo:abstract
  • Flow-accelerated corrosion (FAC), also known as flow-assisted corrosion, is a corrosion mechanism in which a normally protective oxide layer on a metal surface dissolves in a fast flowing water. The underlying metal corrodes to re-create the oxide, and thus the metal loss continues. By definition, the rate of FAC depends on the flow velocity. FAC often affects carbon steel piping carrying ultra-pure, deoxygenated water or wet steam. Stainless steel does not suffer from FAC. FAC of carbon steel halts in the presence of small amount of oxygen dissolved in water. FAC rates rapidly decrease with increasing water pH. FAC has to be distinguished from erosion corrosion because the fundamental mechanisms for the two corrosion modes are different. FAC does not involve impingement of particles, bubbles, or cavitation which cause the mechanical (often crater-like) wear on the surface. By contrast to mechanical erosion, FAC involves dissolution of normally poorly soluble oxide by combined electrochemical, water chemistry and mass-transfer phenomena. Nevertheless, the terms FAC and erosion are sometimes used interchangeably because the actual mechanism may, in some cases, be unclear. FAC was the cause of several high-profile accidents in power plants, for example, a rupture of a high-pressure condensate line in Virginia Power's Surry nuclear plant in 1986, that resulted in four fatalities and four injuries. (en)
  • Korozja uderzeniowa – degradacja materiału, na które działa szybko przepływająca ciecz, stąd nazywa się ona też erozją-korozją. Może wystąpić w miejscu gdzie medium nie wykazuje przepływu laminarnego, np. w rurociagach. (pl)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 12337275 (xsd:integer)
dbo:wikiPageLength
  • 2043 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1099084901 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • Korozja uderzeniowa – degradacja materiału, na które działa szybko przepływająca ciecz, stąd nazywa się ona też erozją-korozją. Może wystąpić w miejscu gdzie medium nie wykazuje przepływu laminarnego, np. w rurociagach. (pl)
  • Flow-accelerated corrosion (FAC), also known as flow-assisted corrosion, is a corrosion mechanism in which a normally protective oxide layer on a metal surface dissolves in a fast flowing water. The underlying metal corrodes to re-create the oxide, and thus the metal loss continues. FAC was the cause of several high-profile accidents in power plants, for example, a rupture of a high-pressure condensate line in Virginia Power's Surry nuclear plant in 1986, that resulted in four fatalities and four injuries. (en)
rdfs:label
  • Flow-accelerated corrosion (en)
  • Korozja uderzeniowa (pl)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License