An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

The fixed-point lemma for normal functions is a basic result in axiomatic set theory stating that any normal function has arbitrarily large fixed points (Levy 1979: p. 117). It was first proved by Oswald Veblen in 1908.

Property Value
dbo:abstract
  • The fixed-point lemma for normal functions is a basic result in axiomatic set theory stating that any normal function has arbitrarily large fixed points (Levy 1979: p. 117). It was first proved by Oswald Veblen in 1908. (en)
  • El lema del punto fijo para funciones normales o teorema del punto fijo de Veblen es un teorema básico de la teoría axiomática de conjuntos que afirma cualquier tiene una cantidad arbitrariamente grande puntos fijos,​ demostrado por Oswald Veblen en 1908. (es)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 404343 (xsd:integer)
dbo:wikiPageLength
  • 4152 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1062550874 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • The fixed-point lemma for normal functions is a basic result in axiomatic set theory stating that any normal function has arbitrarily large fixed points (Levy 1979: p. 117). It was first proved by Oswald Veblen in 1908. (en)
  • El lema del punto fijo para funciones normales o teorema del punto fijo de Veblen es un teorema básico de la teoría axiomática de conjuntos que afirma cualquier tiene una cantidad arbitrariamente grande puntos fijos,​ demostrado por Oswald Veblen en 1908. (es)
rdfs:label
  • Lema del punto fijo para funciones normales (es)
  • Fixed-point lemma for normal functions (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License