An Entity of Type: software, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In computational complexity theory, the complexity class FNP is the function problem extension of the decision problem class NP. The name is somewhat of a misnomer, since technically it is a class of binary relations, not functions, as the following formal definition explains: A binary relation P(x,y), where y is at most polynomially longer than x, is in FNP if and only if there is a deterministic polynomial time algorithm that can determine whether P(x,y) holds given both x and y. This definition does not involve nondeterminism and is analogous to the verifier definition of NP.

Property Value
dbo:abstract
  • In computational complexity theory, the complexity class FNP is the function problem extension of the decision problem class NP. The name is somewhat of a misnomer, since technically it is a class of binary relations, not functions, as the following formal definition explains: A binary relation P(x,y), where y is at most polynomially longer than x, is in FNP if and only if there is a deterministic polynomial time algorithm that can determine whether P(x,y) holds given both x and y. This definition does not involve nondeterminism and is analogous to the verifier definition of NP. There is an NP language directly corresponding to every FNP relation, sometimes called the decision problem induced by or corresponding to said FNP relation. It is the language formed by taking all the x for which P(x,y) holds given some y; however, there may be more than one FNP relation for a particular decision problem. Many problems in NP, including many NP-complete problems, ask whether a particular object exists, such as a satisfying assignment, a graph coloring, or a clique of a certain size. The FNP versions of these problems ask not only if it exists but what its value is if it does. This means that the FNP version of every NP-complete problem is NP-hard. Bellare and Goldwasser showed in 1994 using some standard assumptions that there exist problems in NP such that their FNP versions are not , implying that they are harder than their corresponding decision problem. For each P(x,y) in FNP, the search problem associated with P(x,y) is: given x, find a y such that P(x,y) holds, or state that no such y exists. The search problem for every relation in FNP can be solved in polynomial time if and only if P = NP. This result is usually stated as "FP = FNP if and only if P = NP"; however, for this statement to be true, it is necessary to redefine FP and FNP so that the members of FP and FNP are not relations, but are instead search problems associated with relations. (en)
  • En complejidad computacional, FNP (function NP o NP funcional) es la clase de complejidad que extiende la clase NP (la cual incluye exclusivamente problemas de decisión), hacia problemas computacionales de tipo funcional, es decir, aquellos que obtienen como salidas valores distintos de SÍ o NO. Sin embargo, a pesar del nombre de la clase, técnicamente ésta no incluye funciones, sino relaciones binarias. (es)
dbo:wikiPageID
  • 663351 (xsd:integer)
dbo:wikiPageLength
  • 4237 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1093800236 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • En complejidad computacional, FNP (function NP o NP funcional) es la clase de complejidad que extiende la clase NP (la cual incluye exclusivamente problemas de decisión), hacia problemas computacionales de tipo funcional, es decir, aquellos que obtienen como salidas valores distintos de SÍ o NO. Sin embargo, a pesar del nombre de la clase, técnicamente ésta no incluye funciones, sino relaciones binarias. (es)
  • In computational complexity theory, the complexity class FNP is the function problem extension of the decision problem class NP. The name is somewhat of a misnomer, since technically it is a class of binary relations, not functions, as the following formal definition explains: A binary relation P(x,y), where y is at most polynomially longer than x, is in FNP if and only if there is a deterministic polynomial time algorithm that can determine whether P(x,y) holds given both x and y. This definition does not involve nondeterminism and is analogous to the verifier definition of NP. (en)
rdfs:label
  • FNP (clase de complejidad) (es)
  • FNP (complexity) (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License