An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In extremal graph theory, the even circuit theorem is a result of Paul Erdős according to which an n-vertex graph that does not have a simple cycle of length 2k can only have O(n1 + 1/k) edges. For instance, 4-cycle-free graphs have O(n3/2) edges, 6-cycle-free graphs have O(n4/3) edges, etc.

Property Value
dbo:abstract
  • In extremal graph theory, the even circuit theorem is a result of Paul Erdős according to which an n-vertex graph that does not have a simple cycle of length 2k can only have O(n1 + 1/k) edges. For instance, 4-cycle-free graphs have O(n3/2) edges, 6-cycle-free graphs have O(n4/3) edges, etc. (en)
dbo:wikiPageID
  • 48481471 (xsd:integer)
dbo:wikiPageLength
  • 6021 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1117919785 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdfs:comment
  • In extremal graph theory, the even circuit theorem is a result of Paul Erdős according to which an n-vertex graph that does not have a simple cycle of length 2k can only have O(n1 + 1/k) edges. For instance, 4-cycle-free graphs have O(n3/2) edges, 6-cycle-free graphs have O(n4/3) edges, etc. (en)
rdfs:label
  • Even circuit theorem (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License