An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

The Esscher principle is an . It is given by , where is a strictly positive parameter. This premium is the for a risk , where denotes the moment generating function. The Esscher principle is a risk measure used in actuarial sciences that derives from the Esscher transform. This risk measure does not respect the positive homogeneity property of coherent risk measure for .

Property Value
dbo:abstract
  • The Esscher principle is an . It is given by , where is a strictly positive parameter. This premium is the for a risk , where denotes the moment generating function. The Esscher principle is a risk measure used in actuarial sciences that derives from the Esscher transform. This risk measure does not respect the positive homogeneity property of coherent risk measure for . (en)
  • エッシャー原理(エッシャーげんり、英: Esscher principle)とは、保険料計算原理の1つであり、 により与えられ。この原理では、 なるリスクに対する純保険料を導かれる。ここで、 は、積率母関数を表す。 (ja)
dbo:wikiPageID
  • 16204398 (xsd:integer)
dbo:wikiPageLength
  • 641 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 758178173 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • The Esscher principle is an . It is given by , where is a strictly positive parameter. This premium is the for a risk , where denotes the moment generating function. The Esscher principle is a risk measure used in actuarial sciences that derives from the Esscher transform. This risk measure does not respect the positive homogeneity property of coherent risk measure for . (en)
  • エッシャー原理(エッシャーげんり、英: Esscher principle)とは、保険料計算原理の1つであり、 により与えられ。この原理では、 なるリスクに対する純保険料を導かれる。ここで、 は、積率母関数を表す。 (ja)
rdfs:label
  • Esscher principle (en)
  • エッシャー原理 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License