An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In the theory of radiative transfer, of either thermal or neutron radiation, a position and direction-dependent intensity function is usually sought for the description of the radiation field. The intensity field can in principle be solved from the integrodifferential radiative transfer equation (RTE), but an exact solution is usually impossible and even in the case of geometrically simple systems can contain unusual special functions such as the Chandrasekhar's H-function and Chandrasekhar's X- and Y-functions. The method of discrete ordinates, or the Sn method, is one way to approximately solve the RTE by discretizing both the xyz-domain and the angular variables that specify the direction of radiation. The methods were developed by Subrahmanyan Chandrasekhar when he was working on radia

Property Value
dbo:abstract
  • In the theory of radiative transfer, of either thermal or neutron radiation, a position and direction-dependent intensity function is usually sought for the description of the radiation field. The intensity field can in principle be solved from the integrodifferential radiative transfer equation (RTE), but an exact solution is usually impossible and even in the case of geometrically simple systems can contain unusual special functions such as the Chandrasekhar's H-function and Chandrasekhar's X- and Y-functions. The method of discrete ordinates, or the Sn method, is one way to approximately solve the RTE by discretizing both the xyz-domain and the angular variables that specify the direction of radiation. The methods were developed by Subrahmanyan Chandrasekhar when he was working on radiative transfer. (en)
  • La méthode SN (S pour segmented) ou méthode des ordonnées discrètes permet la résolution de l'équation du transfert radiatif ou équation de Boltzmann utilisée pour la propagation des particules telles photons, neutrons, neutrinos, etc. Cette méthode a été introduite par Gian-Carlo Wick (1943) et Subrahmanyan Chandrasekhar (1944). Elle consiste à remplacer l'équation continue vis-à-vis des directions de propagation par un système linéaire portant sur des directions choisies a priori. (fr)
dbo:wikiPageID
  • 53894060 (xsd:integer)
dbo:wikiPageLength
  • 4929 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1080203877 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • La méthode SN (S pour segmented) ou méthode des ordonnées discrètes permet la résolution de l'équation du transfert radiatif ou équation de Boltzmann utilisée pour la propagation des particules telles photons, neutrons, neutrinos, etc. Cette méthode a été introduite par Gian-Carlo Wick (1943) et Subrahmanyan Chandrasekhar (1944). Elle consiste à remplacer l'équation continue vis-à-vis des directions de propagation par un système linéaire portant sur des directions choisies a priori. (fr)
  • In the theory of radiative transfer, of either thermal or neutron radiation, a position and direction-dependent intensity function is usually sought for the description of the radiation field. The intensity field can in principle be solved from the integrodifferential radiative transfer equation (RTE), but an exact solution is usually impossible and even in the case of geometrically simple systems can contain unusual special functions such as the Chandrasekhar's H-function and Chandrasekhar's X- and Y-functions. The method of discrete ordinates, or the Sn method, is one way to approximately solve the RTE by discretizing both the xyz-domain and the angular variables that specify the direction of radiation. The methods were developed by Subrahmanyan Chandrasekhar when he was working on radia (en)
rdfs:label
  • Discrete ordinates method (en)
  • Méthode SN (fr)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License