A directed infinity is a type of infinity in the complex plane that has a defined complex argument θ but an infinite absolute value r. For example, the limit of 1/x where x is a positive real number approaching zero is a directed infinity with argument 0; however, 1/0 is not a directed infinity, but a complex infinity. Some rules for manipulation of directed infinities (with all variables finite) are: * * * * Here, sgn(z) = z/|z| is the complex signum function.
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink | |
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is dbo:wikiPageRedirects of | |
is dbo:wikiPageWikiLink of | |
is foaf:primaryTopic of |