An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Diffusion wavelets are a fast multiscale framework for the analysis of functions on discrete (or discretized continuous) structures like graphs, manifolds, and point clouds in Euclidean space. Diffusion wavelets are an extension of classical wavelet theory from harmonic analysis. Unlike classical wavelets whose basis functions are predetermined, diffusion wavelets are adapted to the geometry of a given diffusion operator (e.g., a heat kernel or a random walk). Moreover, the diffusion wavelet basis functions are constructed by dilation using the dyadic powers (powers of two) of . These dyadic powers of diffusion over the space and propagate local relationships in the function throughout the space until they become global. And if the rank of higher powers of decrease (i.e., its spectrum d

Property Value
dbo:abstract
  • Diffusion wavelets are a fast multiscale framework for the analysis of functions on discrete (or discretized continuous) structures like graphs, manifolds, and point clouds in Euclidean space. Diffusion wavelets are an extension of classical wavelet theory from harmonic analysis. Unlike classical wavelets whose basis functions are predetermined, diffusion wavelets are adapted to the geometry of a given diffusion operator (e.g., a heat kernel or a random walk). Moreover, the diffusion wavelet basis functions are constructed by dilation using the dyadic powers (powers of two) of . These dyadic powers of diffusion over the space and propagate local relationships in the function throughout the space until they become global. And if the rank of higher powers of decrease (i.e., its spectrum decays), then these higher powers become compressible. From these decaying dyadic powers of comes a chain of decreasing subspaces. These subspaces are the scaling function approximation subspaces, and the differences in the subspace chain are the wavelet subspaces. Diffusion wavelets were first introduced in 2004 by Ronald Coifman and Mauro Maggioni at Yale University. (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 34073955 (xsd:integer)
dbo:wikiPageLength
  • 7732 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1102862747 (xsd:integer)
dbo:wikiPageWikiLink
dcterms:subject
rdf:type
rdfs:comment
  • Diffusion wavelets are a fast multiscale framework for the analysis of functions on discrete (or discretized continuous) structures like graphs, manifolds, and point clouds in Euclidean space. Diffusion wavelets are an extension of classical wavelet theory from harmonic analysis. Unlike classical wavelets whose basis functions are predetermined, diffusion wavelets are adapted to the geometry of a given diffusion operator (e.g., a heat kernel or a random walk). Moreover, the diffusion wavelet basis functions are constructed by dilation using the dyadic powers (powers of two) of . These dyadic powers of diffusion over the space and propagate local relationships in the function throughout the space until they become global. And if the rank of higher powers of decrease (i.e., its spectrum d (en)
rdfs:label
  • Diffusion wavelets (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License