An Entity of Type: Function113783816, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, the crenel function is a periodic discontinuous function P(x) defined as 1 for x belonging to a given interval and 0 outside of it. It can be presented as a difference between two Heaviside step functions of amplitude 1. It is used in crystallography to account for irregularities in the occupation of atomic sites by given atoms in solids, such as periodic domain structures, where some regions are enriched and some are depleted with certain atoms. Mathematically, The coefficients of its Fourier series are with the Sinc function.

Property Value
dbo:abstract
  • En matemàtiques, la funció de crenel (o funció merlet) és una funció discontínua periòdica P (x) definida com a 1 per a x pertanyent a un interval donat, i 0 per fora de la mateix. Es pot presentar com a diferència entre dues funcions esglaó de Heaviside d'amplitud 1. Es fa servir en cristal·lografia per explicar les irregularitats en l'ocupació de llocs atòmics per àtoms donats en sòlids, com ara estructures de domini periòdic, on algunes regions estan enriquides amb àtoms i altres estan buides. Matemàticament Els coeficients de la seva sèrie de Fourier són: amb la funció sinc. (ca)
  • In mathematics, the crenel function is a periodic discontinuous function P(x) defined as 1 for x belonging to a given interval and 0 outside of it. It can be presented as a difference between two Heaviside step functions of amplitude 1. It is used in crystallography to account for irregularities in the occupation of atomic sites by given atoms in solids, such as periodic domain structures, where some regions are enriched and some are depleted with certain atoms. Mathematically, The coefficients of its Fourier series are with the Sinc function. (en)
dbo:wikiPageID
  • 42331975 (xsd:integer)
dbo:wikiPageLength
  • 1724 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 799207633 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • En matemàtiques, la funció de crenel (o funció merlet) és una funció discontínua periòdica P (x) definida com a 1 per a x pertanyent a un interval donat, i 0 per fora de la mateix. Es pot presentar com a diferència entre dues funcions esglaó de Heaviside d'amplitud 1. Es fa servir en cristal·lografia per explicar les irregularitats en l'ocupació de llocs atòmics per àtoms donats en sòlids, com ara estructures de domini periòdic, on algunes regions estan enriquides amb àtoms i altres estan buides. Matemàticament Els coeficients de la seva sèrie de Fourier són: amb la funció sinc. (ca)
  • In mathematics, the crenel function is a periodic discontinuous function P(x) defined as 1 for x belonging to a given interval and 0 outside of it. It can be presented as a difference between two Heaviside step functions of amplitude 1. It is used in crystallography to account for irregularities in the occupation of atomic sites by given atoms in solids, such as periodic domain structures, where some regions are enriched and some are depleted with certain atoms. Mathematically, The coefficients of its Fourier series are with the Sinc function. (en)
rdfs:label
  • Funció de Crenel (ca)
  • Crenel function (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License