dbo:abstract
|
- اقترح بيث وويلسون نموذج الانقلاب الحراري للمستعر الأعظم في عام 1985، وحصل على اختبار دراماتيكي مع SN1987A، واكتشاف النيوترونات من الانفجار. هذا النموذج هو للنوع الثاني من المستعرات العُضمى، الذي يحدث في النجوم الأكثر كتلًة من الشمس بثمانِ مرات. عندما يصبح اللب الحديدي لنجم فائق الضخامة أثقل مما يمكن أن يدعمه ضغط تفسخ الإلكترون، ينهار قلب النجم، ويتم ضغط القلب الحديدي بواسطة الجاذبية حتى يتم الوصول إلى الكثافة النووية عندما يرسل ارتداد قوي موجة صدمة في بقية أنحاء النجم وتُمزقُهُ لإجزاء في انفجار مستعر أعظم كبير. سوف تصبح بقايا هذا اللب في النهاية نجمة نيوترونية. ينتج عن الانهيار تفاعلين: أحدهما يفصل نواة الحديد إلى 13 ذرة من هيليوم و 4 نيوترونات، تمتص الطاقة؛ والثاني ينتج موجة من النيوتريونات تشكل موجة صدمة. في حين أن جميع النماذج تتفق على أن هنالك صدمة الحمل الحراري، هناك خلاف حول مدى أهمية هذه الصدمة في انفجار المستعر الأعظم. في نموذج الانقلاب الحراري، ينهار اللب بشكل أسرع وأسرع، متجاوزًا سرعة الصوت داخل النجم، وينتج موجة صدمة تفوق سرعة الصوت. تنفجر موجة الصدمة هذه إلى الخارج حتى تتوقف عند وصولها إلى الغلاف النيوتريني، حيث يتجاوز ضغط النجم بأتجاه الداخل ضغط النيوتريونات المشعة بأتجاه الخارج. هذه النقطة تنتج عناصر أثقل بينما يتم امتصاص النيوتريونات. يمثل توقف موجة الصدمة مشكلة المستعرات العظمى، لأنه بمجرد توقفها، يجب عدم «إعادة تنشيط» موجة الصدمة. ينص نموذج الحمل الحراري السريع على أن موجة الصدمة ستزيد من لمعان النيوتريونات التي ينتجها انهيار اللب، وهذه الزيادة في الطاقة ستتسبب في بداية موجة الصدمة في الانتقال مرة أخرى. نموذج أصابع النيوترون لديه عدم استقرار بالقرب من اللب طاردًا موجة أخرى من النيوتريونات مُعيدًة تنشيط موجة الصدمة. يحتوي نموذج الحمل الحراري الإنتروبي على سقوط مادة إلى الداخل من أعلى طبقة الصدمة إلى نصف قطر الكسب، الأمر الذي لن يزيد من لمعان النيوترينو، ولكنه سيسمح لموجة الصدمة بالاستمرار بإتجاه الخارج.تظهر جميع هذه النماذج انقلابًا حراريًا لأنها تعتمد على آلية الحمل الحراري لإعادة تنشيط موجة الصدمة المتوقفة واستكمال انفجار المستعر الأعظم. لا تزال هناك مشكلات مفتوحة في كل من النماذج الحرارية وفي نموذج انهيار اللب الأكثر عمومية، والتي تشمل عدم مراعاة خلط النكهة وكتلة النيوتريونات، وعدم القدرة على نمذجة الانفجارات الكبيرة. تشير النماذج الحالية إلى أن الانهيار قد يحدث بشكل أبطأ مما كان يعتقد من قبل، مما يعني أن موجة الصدمة ستتغلغل في الطبقات العليا للنجم. يعزز نجم البروتونات النيوترونية لمعان النيوترينو، بينما تساعد النيوتريونات الإضافية المنبعثة في إعادة تنشيط موجة الصدمة. تزيل هذه التغييرات بعض، وليس جميع، من مشكلة المستعرات العظمى، وتعزز فكرة الحمل الحراري كعامل مهم في انفجارات المستعرات العظمى. (ar)
- The convective overturn model of supernovae was proposed by Bethe and Wilson in 1985, and received a dramatic test with SN 1987A, and the detection of neutrinos from the explosion. The model is for type II supernovae, which take place in stars more massive than 8 solar masses. When the iron core of a super massive star becomes heavier than electron degeneracy pressure can support, the core of the star collapses, and the iron core is compressed by gravity until nuclear densities are reached when a strong rebound sends a shock wave throughout the rest of the star and tears it apart in a large supernova explosion. The remains of this core will eventually become a neutron star. The collapse produces two reactions: one breaks apart iron nuclei into 13 helium atoms and 4 neutrons, absorbing energy; and the second produces a wave of neutrinos that form a shock wave. While all models agree that there is a convective shock, there is disagreement as to how important that shock is to the supernova explosion. In the convective overturn model, the core collapses faster and faster, exceeding the speed of sound inside the star, and producing a supersonic shock wave. This shock wave explodes outward until it stalls when it reaches the , where the pressure of the star collapsing inward exceeds the pressure of the neutrinos radiating outwards. This point produces heavier elements as the neutrinos are absorbed. The stalling of the shock wave represents the supernova problem, because once stalled, the shock wave should not be "reenergized". The prompt convection model states that the shock wave will increase the luminosity of the neutrinos produced by the core collapse, and this increase in energy will start the shock wave going again. The neutron fingers model has instability near the core expel another wave of energized neutrinos which reenergizes the shock wave. The entropy convection model has matter falling inward from above the shock layer down to the gain radius, which would not increase neutrino luminosity, but would allow the shock wave to continue outwards. All of these models exhibit convective overturn in that they rely on a convection mechanism to re-energize the stalled shock wave and complete the supernova explosion. There are still open issues in both the convective models and in the more general core collapse model, which include not taking into account flavor mixing and mass of neutrinos, and the inability to model large explosions. Current models indicate that the collapse may occur more slowly than thought before, which would mean the shock wave would penetrate farther into the upper layers of the star. The proto-neutron star boosts neutrino luminosities, and the additional neutrinos emitted help re-energize the shock wave. These changes remove some, but not all, of the supernova problem, and strengthen the idea of convection being an important factor in supernova explosions. (en)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 3484 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dcterms:subject
| |
rdfs:comment
|
- اقترح بيث وويلسون نموذج الانقلاب الحراري للمستعر الأعظم في عام 1985، وحصل على اختبار دراماتيكي مع SN1987A، واكتشاف النيوترونات من الانفجار. هذا النموذج هو للنوع الثاني من المستعرات العُضمى، الذي يحدث في النجوم الأكثر كتلًة من الشمس بثمانِ مرات. عندما يصبح اللب الحديدي لنجم فائق الضخامة أثقل مما يمكن أن يدعمه ضغط تفسخ الإلكترون، ينهار قلب النجم، ويتم ضغط القلب الحديدي بواسطة الجاذبية حتى يتم الوصول إلى الكثافة النووية عندما يرسل ارتداد قوي موجة صدمة في بقية أنحاء النجم وتُمزقُهُ لإجزاء في انفجار مستعر أعظم كبير. (ar)
- The convective overturn model of supernovae was proposed by Bethe and Wilson in 1985, and received a dramatic test with SN 1987A, and the detection of neutrinos from the explosion. The model is for type II supernovae, which take place in stars more massive than 8 solar masses. All of these models exhibit convective overturn in that they rely on a convection mechanism to re-energize the stalled shock wave and complete the supernova explosion. (en)
|
rdfs:label
|
- انقلاب حراري (فلك) (ar)
- Convective overturn (en)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |