dbo:abstract
|
- Rekursive Isomorphie ist in der Berechenbarkeitstheorie eine Äquivalenzrelation auf Mengen natürlicher Zahlen. (de)
- In computability theory two sets of natural numbers are computably isomorphic or recursively isomorphic if there exists a total bijective computable function with . By the Myhill isomorphism theorem, the relation of computable isomorphism coincides with the relation of mutual one-one reducibility. Two numberings and are called computably isomorphic if there exists a computable bijection so that Computably isomorphic numberings induce the same notion of computability on a set. (en)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 1449 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:date
| |
dbp:reason
|
- f is a function on naturals, not on sets of naturals, so what is f? (en)
|
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdfs:comment
|
- Rekursive Isomorphie ist in der Berechenbarkeitstheorie eine Äquivalenzrelation auf Mengen natürlicher Zahlen. (de)
- In computability theory two sets of natural numbers are computably isomorphic or recursively isomorphic if there exists a total bijective computable function with . By the Myhill isomorphism theorem, the relation of computable isomorphism coincides with the relation of mutual one-one reducibility. Two numberings and are called computably isomorphic if there exists a computable bijection so that Computably isomorphic numberings induce the same notion of computability on a set. (en)
|
rdfs:label
|
- Rekursive Isomorphie (de)
- Computable isomorphism (en)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |