The compact finite difference formulation, or Hermitian formulation, is a numerical method to compute finite difference approximations. Such approximations tend to be more accurate for their stencil size (i.e. their compactness) and, for hyperbolic problems, have favorable dispersive error and dissipative error properties when compared to explicit schemes. A disadvantage is that compact schemes are implicit and require to solve a diagonal matrix system for the evaluation of interpolations or derivatives at all grid points. Due to their excellent stability properties, compact schemes are a popular choice for use in higher-order numerical solvers for the Navier-Stokes Equations.
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink | |
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
gold:hypernym | |
rdf:type | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is foaf:primaryTopic of |