An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Cobham's theorem is a theorem in combinatorics on words that has important connections with number theory, notably transcendental numbers, and automata theory. Informally, the theorem gives the condition for the members of a set S of natural numbers written in bases b1 and base b2 to be recognised by finite automata. Specifically, consider bases b1 and b2 such that they are not powers of the same integer. Cobham's theorem states that S written in bases b1 and b2 is recognised by finite automata if and only if S is a finite union of arithmetic progressions. The theorem was proved by Alan Cobham in 1969 and has since given rise to many extensions and generalisations.

Property Value
dbo:abstract
  • Cobham's theorem is a theorem in combinatorics on words that has important connections with number theory, notably transcendental numbers, and automata theory. Informally, the theorem gives the condition for the members of a set S of natural numbers written in bases b1 and base b2 to be recognised by finite automata. Specifically, consider bases b1 and b2 such that they are not powers of the same integer. Cobham's theorem states that S written in bases b1 and b2 is recognised by finite automata if and only if S is a finite union of arithmetic progressions. The theorem was proved by Alan Cobham in 1969 and has since given rise to many extensions and generalisations. (en)
  • Le théorème de Cobham est un théorème de combinatoire des mots qui a des connexions importantes avec la théorie des nombres, et notamment des nombres transcendants, et avec la théorie des automates. Le théorème stipule que si les écritures, en deux bases multiplicativement indépendantes, d'un ensemble d'entiers naturels S sont des langages rationnels, alors l'ensemble S est une union finie de progressions arithmétiques. Le théorème a été prouvé par Alan Cobham en 1969. Depuis, il a donné lieu à de nombreuses extensions et généralisations. (fr)
dbo:wikiPageID
  • 68044793 (xsd:integer)
dbo:wikiPageLength
  • 17771 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1121972587 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • Cobham's theorem is a theorem in combinatorics on words that has important connections with number theory, notably transcendental numbers, and automata theory. Informally, the theorem gives the condition for the members of a set S of natural numbers written in bases b1 and base b2 to be recognised by finite automata. Specifically, consider bases b1 and b2 such that they are not powers of the same integer. Cobham's theorem states that S written in bases b1 and b2 is recognised by finite automata if and only if S is a finite union of arithmetic progressions. The theorem was proved by Alan Cobham in 1969 and has since given rise to many extensions and generalisations. (en)
  • Le théorème de Cobham est un théorème de combinatoire des mots qui a des connexions importantes avec la théorie des nombres, et notamment des nombres transcendants, et avec la théorie des automates. Le théorème stipule que si les écritures, en deux bases multiplicativement indépendantes, d'un ensemble d'entiers naturels S sont des langages rationnels, alors l'ensemble S est une union finie de progressions arithmétiques. Le théorème a été prouvé par Alan Cobham en 1969. Depuis, il a donné lieu à de nombreuses extensions et généralisations. (fr)
rdfs:label
  • Cobham's theorem (en)
  • Théorème de Cobham (fr)
owl:differentFrom
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:differentFrom of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License