An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In formal language theory, the Chomsky–Schützenberger representation theorem is a theorem derived by Noam Chomsky and Marcel-Paul Schützenberger about representing a given context-free language in terms of two simpler languages. These two simpler languages, namely a regular language and a Dyck language, are combined by means of an intersection and a homomorphism. Chomsky–Schützenberger theorem. A language L over the alphabet is context-free if and only if there exists * a matched alphabet * a regular language over , * and a homomorphism such that .

Property Value
dbo:abstract
  • In formal language theory, the Chomsky–Schützenberger representation theorem is a theorem derived by Noam Chomsky and Marcel-Paul Schützenberger about representing a given context-free language in terms of two simpler languages. These two simpler languages, namely a regular language and a Dyck language, are combined by means of an intersection and a homomorphism. A few notions from formal language theory are in order. A context-free language is regular, if can be described by a regular expression, or, equivalently, if it is accepted by a finite automaton. A homomorphism is based on a function which maps symbols from an alphabet to words over another alphabet ; If the domain of this function is extended to words over in the natural way, by letting for all words and , this yields a homomorphism . A matched alphabet is an alphabet with two equal-sized sets; it is convenient to think of it as a set of parentheses types, where contains the opening parenthesis symbols, whereas the symbols in contains the closing parenthesis symbols. For a matched alphabet , the Dyck language is given by Chomsky–Schützenberger theorem. A language L over the alphabet is context-free if and only if there exists * a matched alphabet * a regular language over , * and a homomorphism such that . Proofs of this theorem are found in several textbooks, e.g. or . (en)
  • En informatique théorique, et notamment en théorie des langages formels, le théorème de Chomsky-Schützenberger est un théorème de représentation. Il affirme que tout langage algébrique peut s'exprimer, au moyen d'une certaine construction, à partir d'un langage de Dyck. En ce sens, le théorème affirme que les langages de Dyck sont des langages algébriques « typiques ». Ce théorème est nommé ainsi d'après Noam Chomsky et Marcel-Paul Schützenberger. Il figure dans leur article commun de 1963. (fr)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 44695495 (xsd:integer)
dbo:wikiPageLength
  • 3381 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1028254770 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • En informatique théorique, et notamment en théorie des langages formels, le théorème de Chomsky-Schützenberger est un théorème de représentation. Il affirme que tout langage algébrique peut s'exprimer, au moyen d'une certaine construction, à partir d'un langage de Dyck. En ce sens, le théorème affirme que les langages de Dyck sont des langages algébriques « typiques ». Ce théorème est nommé ainsi d'après Noam Chomsky et Marcel-Paul Schützenberger. Il figure dans leur article commun de 1963. (fr)
  • In formal language theory, the Chomsky–Schützenberger representation theorem is a theorem derived by Noam Chomsky and Marcel-Paul Schützenberger about representing a given context-free language in terms of two simpler languages. These two simpler languages, namely a regular language and a Dyck language, are combined by means of an intersection and a homomorphism. Chomsky–Schützenberger theorem. A language L over the alphabet is context-free if and only if there exists * a matched alphabet * a regular language over , * and a homomorphism such that . (en)
rdfs:label
  • Chomsky–Schützenberger representation theorem (en)
  • Théorème de Chomsky-Schützenberger (langage formel) (fr)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License