A Chevalley scheme in algebraic geometry was a precursor notion of scheme theory. Let X be a separated integral noetherian scheme, R its function field. If we denote by the set of subrings of R, where x runs through X (when , we denote by ), verifies the following three properties * For each , R is the field of fractions of M. * There is a finite set of noetherian subrings of R so that and that, for each pair of indices i,j, the subring of R generated by is an -algebra of finite type. * If in are such that the maximal ideal of M is contained in that of N, then M=N.
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink | |
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is dbo:knownFor of | |
is dbo:wikiPageRedirects of | |
is dbo:wikiPageWikiLink of | |
is dbp:knownFor of | |
is foaf:primaryTopic of |