An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In probability theory, the central limit theorem states conditions under which the average of a sufficiently large number of independent random variables, each with finite mean and variance, will be approximately normally distributed. Directional statistics is the subdiscipline of statistics that deals with directions (unit vectors in Rn), axes (lines through the origin in Rn) or rotations in Rn. The means and variances of directional quantities are all finite, so that the central limit theorem may be applied to the particular case of directional statistics.

Property Value
dbo:abstract
  • In probability theory, the central limit theorem states conditions under which the average of a sufficiently large number of independent random variables, each with finite mean and variance, will be approximately normally distributed. Directional statistics is the subdiscipline of statistics that deals with directions (unit vectors in Rn), axes (lines through the origin in Rn) or rotations in Rn. The means and variances of directional quantities are all finite, so that the central limit theorem may be applied to the particular case of directional statistics. This article will deal only with unit vectors in 2-dimensional space (R2) but the method described can be extended to the general case. (en)
dbo:wikiPageID
  • 31797677 (xsd:integer)
dbo:wikiPageLength
  • 5299 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1105362848 (xsd:integer)
dbo:wikiPageWikiLink
dcterms:subject
rdfs:comment
  • In probability theory, the central limit theorem states conditions under which the average of a sufficiently large number of independent random variables, each with finite mean and variance, will be approximately normally distributed. Directional statistics is the subdiscipline of statistics that deals with directions (unit vectors in Rn), axes (lines through the origin in Rn) or rotations in Rn. The means and variances of directional quantities are all finite, so that the central limit theorem may be applied to the particular case of directional statistics. (en)
rdfs:label
  • Central limit theorem for directional statistics (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License