In the mathematical fields of differential geometry and geometric analysis, the Calabi flow is a geometric flow which deforms a Kähler metric on a complex manifold. Precisely, given a Kähler manifold M, the Calabi flow is given by: , where g is a mapping from an open interval into the collection of all Kähler metrics on M, Rg is the scalar curvature of the individual Kähler metrics, and the indices α, β correspond to arbitrary holomorphic coordinates zα. This is a fourth-order geometric flow, as the right-hand side of the equation involves fourth derivatives of g.
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink | |
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
gold:hypernym | |
rdf:type | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is dbo:knownFor of | |
is dbo:wikiPageWikiLink of | |
is dbp:knownFor of | |
is foaf:primaryTopic of |