dbo:abstract
|
- In mathematics, Brandt matrices are matrices, introduced by Brandt, that are related to the number of ideals of given norm in an ideal class of a definite quaternion algebra over the rationals, and that give a representation of the Hecke algebra. calculated the traces of the Brandt matrices. Let O be an order in a quaternion algebra with class number H, and Ii,...,IH invertible left O-ideals representing the classes. Fix an integer m. Let ej denote the number of units in the right order of Ij and let Bij denote the number of α in Ij−1Ii with reduced norm N(α) equal to mN(Ii)/N(Ij). The Brandt matrix B(m) is the H×H matrix with entries Bij. Up to conjugation by a permutation matrix it is independent of the choice of representatives Ij; it is dependent only on the level of the order O. (en)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 2947 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
gold:hypernym
| |
rdf:type
| |
rdfs:comment
|
- In mathematics, Brandt matrices are matrices, introduced by Brandt, that are related to the number of ideals of given norm in an ideal class of a definite quaternion algebra over the rationals, and that give a representation of the Hecke algebra. calculated the traces of the Brandt matrices. (en)
|
rdfs:label
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |