An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In physics, in the context of electromagnetism, Birkhoff's theorem concerns spherically symmetric static solutions of Maxwell's field equations of electromagnetism. The theorem is due to George D. Birkhoff. It states that any spherically symmetric solution of the source-free Maxwell equations is necessarily static. Pappas (1984) gives two proofs of this theorem, using Maxwell's equations and Lie derivatives. It is a limiting case of Birkhoff's theorem (relativity) by taking the flat metric without backreaction.

Property Value
dbo:abstract
  • In physics, in the context of electromagnetism, Birkhoff's theorem concerns spherically symmetric static solutions of Maxwell's field equations of electromagnetism. The theorem is due to George D. Birkhoff. It states that any spherically symmetric solution of the source-free Maxwell equations is necessarily static. Pappas (1984) gives two proofs of this theorem, using Maxwell's equations and Lie derivatives. It is a limiting case of Birkhoff's theorem (relativity) by taking the flat metric without backreaction. (en)
  • En physique, plus particulièrement en électromagnétisme, le théorème de Birkhoff concerne les solutions statiques à symétrie sphérique des équations de Maxwell. C'est à George David Birkhoff que l'on doit ce théorème, qui affirme que toute solution à symétrie sphérique des équations de Maxwell sans source est forcément statique. Deux preuves de ce théorème ont été apportées par Pappas en 1984. (fr)
  • In fisica, nel contesto dell'elettromagnetismo, il teorema di Birkhoff riguarda soluzioni statiche a simmetria sferica delle equazioni del campo di Maxwell dell'elettromagnetismo. Il teorema è merito di George D. Birkhoff. Esso afferma che ogni soluzione a simmetria sferica di una sorgente libera delle equazioni di Maxwell è necessariamente statica. Pappas (1984) diede due dimostrazioni di questo teorema. (it)
dbo:wikiPageID
  • 1683023 (xsd:integer)
dbo:wikiPageLength
  • 5000 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1120094609 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • In physics, in the context of electromagnetism, Birkhoff's theorem concerns spherically symmetric static solutions of Maxwell's field equations of electromagnetism. The theorem is due to George D. Birkhoff. It states that any spherically symmetric solution of the source-free Maxwell equations is necessarily static. Pappas (1984) gives two proofs of this theorem, using Maxwell's equations and Lie derivatives. It is a limiting case of Birkhoff's theorem (relativity) by taking the flat metric without backreaction. (en)
  • En physique, plus particulièrement en électromagnétisme, le théorème de Birkhoff concerne les solutions statiques à symétrie sphérique des équations de Maxwell. C'est à George David Birkhoff que l'on doit ce théorème, qui affirme que toute solution à symétrie sphérique des équations de Maxwell sans source est forcément statique. Deux preuves de ce théorème ont été apportées par Pappas en 1984. (fr)
  • In fisica, nel contesto dell'elettromagnetismo, il teorema di Birkhoff riguarda soluzioni statiche a simmetria sferica delle equazioni del campo di Maxwell dell'elettromagnetismo. Il teorema è merito di George D. Birkhoff. Esso afferma che ogni soluzione a simmetria sferica di una sorgente libera delle equazioni di Maxwell è necessariamente statica. Pappas (1984) diede due dimostrazioni di questo teorema. (it)
rdfs:label
  • Birkhoff's theorem (electromagnetism) (en)
  • Théorème de Birkhoff (électromagnétisme) (fr)
  • Teorema di Birkhoff (elettromagnetismo) (it)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License