An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, Beez's theorem, introduced by Richard Beez in 1875, implies that if n > 3 then in general an (n – 1)-dimensional hypersurface immersed in Rn cannot be deformed.

Property Value
dbo:abstract
  • In mathematics, Beez's theorem, introduced by Richard Beez in 1875, implies that if n > 3 then in general an (n – 1)-dimensional hypersurface immersed in Rn cannot be deformed. (en)
  • In matematica, il teorema Beez, scoperto da Richard Beez nel 1875 nell'ambito della geometria differenziale, afferma che se n > 3 allora in generale non è possibile deformare una ipersuperficie di dimensione immersa in . (it)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 34948394 (xsd:integer)
dbo:wikiPageLength
  • 1504 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1083534737 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • In mathematics, Beez's theorem, introduced by Richard Beez in 1875, implies that if n > 3 then in general an (n – 1)-dimensional hypersurface immersed in Rn cannot be deformed. (en)
  • In matematica, il teorema Beez, scoperto da Richard Beez nel 1875 nell'ambito della geometria differenziale, afferma che se n > 3 allora in generale non è possibile deformare una ipersuperficie di dimensione immersa in . (it)
rdfs:label
  • Beez's theorem (en)
  • Teorema Beez (it)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License