An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In numerical linear algebra, the Bartels–Stewart algorithm is used to numerically solve the Sylvester matrix equation . Developed by R.H. Bartels and G.W. Stewart in 1971, it was the first numerically stable method that could be systematically applied to solve such equations. The algorithm works by using the real Schur decompositions of and to transform into a triangular system that can then be solved using forward or backward substitution. In 1979, G. Golub, C. Van Loan and S. Nash introduced an improved version of the algorithm, known as the Hessenberg–Schur algorithm. It remains a standard approach for solving Sylvester equations when is of small to moderate size.

Property Value
dbo:abstract
  • In numerical linear algebra, the Bartels–Stewart algorithm is used to numerically solve the Sylvester matrix equation . Developed by R.H. Bartels and G.W. Stewart in 1971, it was the first numerically stable method that could be systematically applied to solve such equations. The algorithm works by using the real Schur decompositions of and to transform into a triangular system that can then be solved using forward or backward substitution. In 1979, G. Golub, C. Van Loan and S. Nash introduced an improved version of the algorithm, known as the Hessenberg–Schur algorithm. It remains a standard approach for solving Sylvester equations when is of small to moderate size. (en)
dbo:wikiPageID
  • 58536963 (xsd:integer)
dbo:wikiPageLength
  • 5493 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1037866232 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In numerical linear algebra, the Bartels–Stewart algorithm is used to numerically solve the Sylvester matrix equation . Developed by R.H. Bartels and G.W. Stewart in 1971, it was the first numerically stable method that could be systematically applied to solve such equations. The algorithm works by using the real Schur decompositions of and to transform into a triangular system that can then be solved using forward or backward substitution. In 1979, G. Golub, C. Van Loan and S. Nash introduced an improved version of the algorithm, known as the Hessenberg–Schur algorithm. It remains a standard approach for solving Sylvester equations when is of small to moderate size. (en)
rdfs:label
  • Bartels–Stewart algorithm (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License