An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

The Barrett–Crane model is a model in quantum gravity, first published in 1998, which was defined using the Plebanski action. The field in the action is supposed to be a -valued 2-form, i.e. taking values in the Lie algebra of a special orthogonal group. The term in the action has the same symmetries as it does to provide the Einstein–Hilbert action. But the form of is not unique and can be posed by the different forms: * * where is the tetrad and is the antisymmetric symbol of the -valued 2-form fields. ,

Property Value
dbo:abstract
  • The Barrett–Crane model is a model in quantum gravity, first published in 1998, which was defined using the Plebanski action. The field in the action is supposed to be a -valued 2-form, i.e. taking values in the Lie algebra of a special orthogonal group. The term in the action has the same symmetries as it does to provide the Einstein–Hilbert action. But the form of is not unique and can be posed by the different forms: * * where is the tetrad and is the antisymmetric symbol of the -valued 2-form fields. The Plebanski action can be constrained to produce the BF model which is a theory of no local degrees of freedom. John W. Barrett and Louis Crane modeled the analogous constraint on the summation over spin foam. The Barrett–Crane model on spin foam quantizes the Plebanski action, but its path integral amplitude corresponds to the degenerate field and not the specific definition , which formally satisfies the Einstein's field equation of general relativity. However, if analysed with the tools of loop quantum gravity the Barrett–Crane model gives an incorrect long-distance limit [1], and so the model is not identical to loop quantum gravity. (en)
  • O modelo Barret-Crane é um modelo de gravidade quântica que foi definido usando a . Este modelo obteve o nome em homenagem aos pesquisadores de gravidade quântica, John W. Barret e Louis Crane, que modelaram a restrição análoga à soma sobre espuma de rotação. O modelo de gravidade quântica de Barrett-Crane pode surgir naturalmente de modelos de matriz de 3 dimensões e 4 dimensões gravidade quântica para 3d e 4d, mas restrita ao espaço homogêneo = , como termo em sua expansão Feynman. Existem várias versões do modelo Barrett-Crane. (pt)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 1892519 (xsd:integer)
dbo:wikiPageLength
  • 2477 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1100206286 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • O modelo Barret-Crane é um modelo de gravidade quântica que foi definido usando a . Este modelo obteve o nome em homenagem aos pesquisadores de gravidade quântica, John W. Barret e Louis Crane, que modelaram a restrição análoga à soma sobre espuma de rotação. O modelo de gravidade quântica de Barrett-Crane pode surgir naturalmente de modelos de matriz de 3 dimensões e 4 dimensões gravidade quântica para 3d e 4d, mas restrita ao espaço homogêneo = , como termo em sua expansão Feynman. Existem várias versões do modelo Barrett-Crane. (pt)
  • The Barrett–Crane model is a model in quantum gravity, first published in 1998, which was defined using the Plebanski action. The field in the action is supposed to be a -valued 2-form, i.e. taking values in the Lie algebra of a special orthogonal group. The term in the action has the same symmetries as it does to provide the Einstein–Hilbert action. But the form of is not unique and can be posed by the different forms: * * where is the tetrad and is the antisymmetric symbol of the -valued 2-form fields. , (en)
rdfs:label
  • Barrett–Crane model (en)
  • Modelo Barret-Crane (pt)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License