An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In functional analysis, the class of B-convex spaces is a class of Banach space. The concept of B-convexity was defined and used to characterize Banach spaces that have the strong law of large numbers by Anatole Beck in 1962; accordingly, "B-convexity" is understood as an abbreviation of Beck convexity. Beck proved the following theorem: A Banach space is B-convex if and only if every sequence of independent, symmetric, uniformly bounded and Radon random variables in that space satisfies the strong law of large numbers.

Property Value
dbo:abstract
  • In functional analysis, the class of B-convex spaces is a class of Banach space. The concept of B-convexity was defined and used to characterize Banach spaces that have the strong law of large numbers by Anatole Beck in 1962; accordingly, "B-convexity" is understood as an abbreviation of Beck convexity. Beck proved the following theorem: A Banach space is B-convex if and only if every sequence of independent, symmetric, uniformly bounded and Radon random variables in that space satisfies the strong law of large numbers. Let X be a Banach space with norm || ||. X is said to be B-convex if for some ε > 0 and some natural number n, it holds true that whenever x1, ..., xn are elements of the closed unit ball of X, there is a choice of signs α1, ..., αn ∈ {−1, +1} such that Later authors have shown that B-convexity is equivalent to a number of other important properties in the theory of Banach spaces. Being B-convex and having Rademacher type were shown to be equivalent Banach-space properties by Gilles Pisier. (en)
dbo:wikiPageID
  • 21600196 (xsd:integer)
dbo:wikiPageLength
  • 2125 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 986722191 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • In functional analysis, the class of B-convex spaces is a class of Banach space. The concept of B-convexity was defined and used to characterize Banach spaces that have the strong law of large numbers by Anatole Beck in 1962; accordingly, "B-convexity" is understood as an abbreviation of Beck convexity. Beck proved the following theorem: A Banach space is B-convex if and only if every sequence of independent, symmetric, uniformly bounded and Radon random variables in that space satisfies the strong law of large numbers. (en)
rdfs:label
  • B-convex space (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License