In algebra, an analytically normal ring is a local ring whose completion is a normal ring, in other words a domain that is integrally closed in its quotient field. proved that if a local ring of an algebraic variety is normal, then it is analytically normal, which is in some sense a variation of Zariski's main theorem. Nagata gave an example of a normal Noetherian local ring that is analytically reducible and therefore not analytically normal.
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageExternalLink | |
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink | |
dbp:last |
|
dbp:loc |
|
dbp:wikiPageUsesTemplate | |
dbp:year |
|
dcterms:subject | |
gold:hypernym | |
rdf:type | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is dbo:wikiPageRedirects of | |
is dbo:wikiPageWikiLink of | |
is foaf:primaryTopic of |