About: Stone's method     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FStone%27s_method

In numerical analysis, Stone's method, also known as the strongly implicit procedure or SIP, is an algorithm for solving a sparse linear system of equations. The method uses an incomplete LU decomposition, which approximates the exact LU decomposition, to get an iterative solution of the problem. The method is named after Harold S. Stone, who proposed it in 1968. In the iterative methods, if the preconditioner matrix M is a good approximation of coefficient matrix A then the convergence is faster. This brings one to idea of using approximate factorization LU of A as the iteration matrix M.

AttributesValues
rdfs:label
  • Stone's method (en)
rdfs:comment
  • In numerical analysis, Stone's method, also known as the strongly implicit procedure or SIP, is an algorithm for solving a sparse linear system of equations. The method uses an incomplete LU decomposition, which approximates the exact LU decomposition, to get an iterative solution of the problem. The method is named after Harold S. Stone, who proposed it in 1968. In the iterative methods, if the preconditioner matrix M is a good approximation of coefficient matrix A then the convergence is faster. This brings one to idea of using approximate factorization LU of A as the iteration matrix M. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
date
  • March 2016 (en)
reason
  • vague (en)
has abstract
  • In numerical analysis, Stone's method, also known as the strongly implicit procedure or SIP, is an algorithm for solving a sparse linear system of equations. The method uses an incomplete LU decomposition, which approximates the exact LU decomposition, to get an iterative solution of the problem. The method is named after Harold S. Stone, who proposed it in 1968. The LU decomposition is an excellent general-purpose linear equation solver. The biggest disadvantage is that it fails to take advantage of coefficient matrix to be a sparse matrix. The LU decomposition of a sparse matrix is usually not sparse, thus, for a large system of equations, LU decomposition may require a prohibitive amount of memory and number of arithmetical operations. In the iterative methods, if the preconditioner matrix M is a good approximation of coefficient matrix A then the convergence is faster. This brings one to idea of using approximate factorization LU of A as the iteration matrix M. A version of incomplete lower-upper decomposition method was proposed by Stone in 1968. This method is designed for equation system arising from discretisation of partial differential equations and was firstly used for a pentadiagonal system of equations obtained while solving an elliptic partial differential equation in a two-dimensional space by a finite difference method. The LU approximate decomposition was looked in the same pentadiagonal form as the original matrix (three diagonals for L and three diagonals for U) as the best match of the seven possible equations for the five unknowns for each row of the matrix. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 50 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software