This HTML5 document contains 146 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbpedia-kohttp://ko.dbpedia.org/resource/
n18https://books.google.com/
n9https://global.dbpedia.org/id/
n11http://earthlingsoft.net/ssp/studium/2001spring/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n20https://link.springer.com/chapter/10.1007/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
dbpedia-ithttp://it.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbpedia-frhttp://fr.dbpedia.org/resource/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/
dbpedia-jahttp://ja.dbpedia.org/resource/

Statements

Subject Item
dbr:Spin_structure
rdf:type
yago:PhysicalEntity100001930 yago:Structure104341686 yago:Object100002684 yago:Whole100003553 yago:Pipe103944672 yago:Way104564698 dbo:ChemicalCompound yago:WikicatRiemannianManifolds yago:Conduit103089014 yago:Tube104493505 yago:YagoGeoEntity yago:Artifact100021939 yago:YagoPermanentlyLocatedEntity yago:Passage103895293 yago:Manifold103717750 yago:WikicatStructuresOnManifolds
rdfs:label
Struttura di spin Structure spinorielle 스핀 다양체 スピン構造 Spin structure
rdfs:comment
미분위상수학에서 스핀 다양체(spin多樣體, 영어: spin manifold)는 스피너장을 정의할 수 있는 다양체다. 즉, 직교 틀다발 을 이중 피복 공간 에 대하여 적절히 주다발 으로 확장할 수 있는 가향 (준) 리만 다양체다. In matematica, e in particolare in geometria differenziale, una struttura di spin definita su una varietà riemanniana orientabile (M, g) consente di definire i fibrati spinoriali associati, dando origine alla nozione di campo spinoriale. 微分幾何学において、向き付け可能リーマン多様体 (M, g) 上のスピン構造(スピンこうぞう、英: spin structure)は、付随するの定義を可能にし、微分幾何学におけるスピノルの概念を生じる。 数理物理学、特に場の量子論へ広く応用され、電荷を持たないフェルミオンに関する任意の理論の定義にスピン構造は必須である。純粋数学的にも、微分幾何学や代数的位相幾何学、K-理論などに於いてスピン構造は興味の対象である。スピン構造はに対する基礎付けを成す。 En géométrie différentielle, il est possible de définir sur certaines variétés riemanniennes la notion de structure spinorielle (qui se décline en structures Spin ou Spinc), étendant ainsi les considérations algébriques sur le groupe spinoriel et les spineurs. En termes imagés, il s'agit de trouver, dans le cadre des « espaces courbes », une géométrie « cachée » à l’œuvre derrière les concepts géométriques ordinaires. On peut aussi y voir une généralisation de la notion d'orientabilité et de changement d'orientation à une forme d'« orientabilité d'ordre supérieur ». Comme l'orientabilité, la présence de structures spinorielles n'est pas universelle mais se heurte à des obstructions qui peuvent être formulées en termes de classes caractéristiques. In differential geometry, a spin structure on an orientable Riemannian manifold (M, g) allows one to define associated spinor bundles, giving rise to the notion of a spinor in differential geometry. Spin structures have wide applications to mathematical physics, in particular to quantum field theory where they are an essential ingredient in the definition of any theory with uncharged fermions. They are also of purely mathematical interest in differential geometry, algebraic topology, and K theory. They form the foundation for spin geometry.
dcterms:subject
dbc:K-theory dbc:Algebraic_topology dbc:Mathematical_physics dbc:Riemannian_manifolds dbc:Structures_on_manifolds
dbo:wikiPageID
2844303
dbo:wikiPageRevisionID
1113944806
dbo:wikiPageWikiLink
dbr:Orthonormal_frame dbr:Algebraic_topology dbr:Triangulation_(topology) dbr:Frame_bundle dbr:Bockstein_homomorphism dbr:Edward_Witten dbc:Structures_on_manifolds dbr:Wavefunction dbr:Exact_sequence dbr:Obstruction_theory dbr:André_Haefliger dbr:Multiplication dbr:Quantum_field_theory dbc:K-theory dbr:Riemannian_manifold dbr:Calabi–Yau_manifold dbr:Spinor_bundle dbr:Metaplectic_structure dbr:Â_genus dbr:Triple_overlap_condition dbr:Particle_physics dbr:Smooth_manifold dbr:Partition_function_(quantum_field_theory) dbr:Genus_(mathematics) dbr:Principal_bundle dbc:Mathematical_physics dbr:Special_orthogonal_group dbr:American_Mathematical_Society dbr:Spin–statistics_theorem dbr:Short_exact_sequence dbr:Orthonormal_basis dbc:Algebraic_topology dbr:Boundary_condition dbr:Orientability dbr:Geometry dbr:Associated_vector_bundle dbr:Arrow dbr:Orthonormal_frame_bundle dbr:Tangent_bundle dbr:Hurewicz_theorem dbr:Normal_bundle dbr:Theta_characteristic dbr:Armand_Borel dbr:Almost_complex_manifold dbr:Oriented dbr:Fibration dbr:Complex_vector_bundle dbr:Affine_space dbr:Universal_coefficient_theorem dbr:Mathematical_physics dbr:3-manifold dbr:Orientable dbr:K_theory dbr:Fibre_metric dbr:Spinor dbr:Friedrich_Hirzebruch dbr:Princeton_University_Press dbr:Topological_manifold dbr:Complex_projective_plane dbr:Complex_projective_space dbr:CW_complex dbr:Spin_representation dbr:Fermion dbr:Supergravity dbr:D-branes dbr:Covering_map dbr:Fiber_bundle dbr:Fermions dbr:Dirac_operator dbr:String_theory dbr:Differential_geometry dbr:Orientable_manifold dbc:Riemannian_manifolds dbr:Chern_class dbr:Complex_manifold dbr:Riemann_surface dbr:Field_theory_(physics) dbr:Long_exact_sequence dbr:N-skeleton dbr:Equivariant dbr:Central_extension_(mathematics) dbr:Homomorphism dbr:Serre_spectral_sequence dbr:Paracompact dbr:Spin_geometry dbr:Max_Karoubi dbr:Stiefel–Whitney_class dbr:Atiyah–Singer_index_theorem dbr:Inner_product_space dbr:Čech_cohomology dbr:Spin_group dbr:Vector_bundle
dbo:wikiPageExternalLink
n11:Spin.pdf n18:books%3Fid=VgG9AwAAQBAJ&pg=PA173 n20:BFb0063673
owl:sameAs
dbpedia-fr:Structure_spinorielle n9:4vqHm dbpedia-it:Struttura_di_spin freebase:m.086ch9 yago-res:Spin_structure wikidata:Q7577418 dbpedia-ko:스핀_다양체 dbpedia-ja:スピン構造
dbp:wikiPageUsesTemplate
dbt:Cite_book
dbo:abstract
In matematica, e in particolare in geometria differenziale, una struttura di spin definita su una varietà riemanniana orientabile (M, g) consente di definire i fibrati spinoriali associati, dando origine alla nozione di campo spinoriale. Le strutture di spin hanno ampie applicazioni in fisica matematica, in particolare nella teoria quantistica dei campi in cui sono un ingrediente essenziale nella definizione di qualsiasi teoria con fermioni privi di carica. Sono anche di interesse puramente matematico in geometria differenziale, topologia algebrica e . Costituiscono le basi per la geometria di spin. In differential geometry, a spin structure on an orientable Riemannian manifold (M, g) allows one to define associated spinor bundles, giving rise to the notion of a spinor in differential geometry. Spin structures have wide applications to mathematical physics, in particular to quantum field theory where they are an essential ingredient in the definition of any theory with uncharged fermions. They are also of purely mathematical interest in differential geometry, algebraic topology, and K theory. They form the foundation for spin geometry. 微分幾何学において、向き付け可能リーマン多様体 (M, g) 上のスピン構造(スピンこうぞう、英: spin structure)は、付随するの定義を可能にし、微分幾何学におけるスピノルの概念を生じる。 数理物理学、特に場の量子論へ広く応用され、電荷を持たないフェルミオンに関する任意の理論の定義にスピン構造は必須である。純粋数学的にも、微分幾何学や代数的位相幾何学、K-理論などに於いてスピン構造は興味の対象である。スピン構造はに対する基礎付けを成す。 En géométrie différentielle, il est possible de définir sur certaines variétés riemanniennes la notion de structure spinorielle (qui se décline en structures Spin ou Spinc), étendant ainsi les considérations algébriques sur le groupe spinoriel et les spineurs. En termes imagés, il s'agit de trouver, dans le cadre des « espaces courbes », une géométrie « cachée » à l’œuvre derrière les concepts géométriques ordinaires. On peut aussi y voir une généralisation de la notion d'orientabilité et de changement d'orientation à une forme d'« orientabilité d'ordre supérieur ». Comme l'orientabilité, la présence de structures spinorielles n'est pas universelle mais se heurte à des obstructions qui peuvent être formulées en termes de classes caractéristiques. Quand elles existent, ces structures jouent un rôle important en géométrie différentielle et en physique théorique. Elles permettent notamment d'introduire l' (en), sorte de racine carrée du laplacien, ou les invariants de Seiberg-Witten pour les variétés orientées de dimension 4. 미분위상수학에서 스핀 다양체(spin多樣體, 영어: spin manifold)는 스피너장을 정의할 수 있는 다양체다. 즉, 직교 틀다발 을 이중 피복 공간 에 대하여 적절히 주다발 으로 확장할 수 있는 가향 (준) 리만 다양체다.
gold:hypernym
dbr:Ingredient
prov:wasDerivedFrom
wikipedia-en:Spin_structure?oldid=1113944806&ns=0
dbo:wikiPageLength
29807
foaf:isPrimaryTopicOf
wikipedia-en:Spin_structure