@prefix rdf: . @prefix dbr: . @prefix owl: . dbr:Sphere rdf:type owl:Thing . @prefix dbo: . dbr:Sphere rdf:type dbo:Bone . @prefix rdfs: . dbr:Sphere rdfs:label "Sphere"@en , "Sf\u00E4r"@sv , "Sfeer (wiskunde)"@nl , "Sfera"@it , "Esfera"@pt , "\u7403\u9762"@ja , "Kugel"@de , "\u0421\u0444\u0435\u0440\u0430"@uk , "Sfero"@eo , "Sf\u00E9ar"@ga , "Esfera"@eu , "\u7403\u9762"@zh , "Sph\u00E8re"@fr , "Sf\u00E9ra (matematika)"@cs , "\u03A3\u03C6\u03B1\u03AF\u03C1\u03B1"@el , "\u0421\u0444\u0435\u0440\u0430"@ru , "\u0643\u0631\u0629"@ar , "Sfera"@pl , "\uAD6C (\uAE30\uD558\uD559)"@ko , "Esfera"@es , "Bola (geometri)"@in , "Esfera"@ca ; rdfs:comment "A esfera pode ser definida como \"uma sequ\u00EAncia de pontos alinhados em todos os sentidos \u00E0 mesma dist\u00E2ncia de um centro comum\". \u00C9 tida tamb\u00E9m como um s\u00F3lido geom\u00E9trico formado por uma superf\u00EDcie curva cont\u00EDnua, cujos pontos est\u00E3o equidistantes de um outro fixo e interior, chamado centro, ou seja: \u00E9 uma superf\u00EDcie fechada de tal forma que todos os pontos dela est\u00E3o \u00E0 mesma dist\u00E2ncia de seu centro; ou ainda: de qualquer ponto de vista de sua superf\u00EDcie, a dist\u00E2ncia ao centro \u00E9 a mesma. A esfera pode ser obtida atrav\u00E9s do movimento de rota\u00E7\u00E3o de um semic\u00EDrculo em torno de seu di\u00E2metro."@pt , "\u521D\u7B49\u5E7E\u4F55\u5B66\u306B\u304A\u3051\u308B\u7403\u9762\uFF08\u304D\u3085\u3046\u3081\u3093\u3001\u82F1: sphere\uFF09\u306F\u3001\u5B8C\u5168\u7403\u4F53 (ball) \u306E\u8868\u9762\u3092\u6210\u3059\u4E09\u6B21\u5143\u7A7A\u9593\u5185\u306E\u307E\u3063\u305F\u304F\u4E38\u3044\u3067\u3042\u308B\u3002\u4E8C\u6B21\u5143\u306E\u5834\u5408\u306B\u3001\u5186\u677F\u306E\u5883\u754C\u304C\u5186\u5468\u3067\u3042\u308B\u3068\u3044\u3046\u95A2\u4FC2\u306E\u4E09\u6B21\u5143\u7684\u306A\u5BFE\u5FDC\u7269\u3068\u8003\u3048\u308B\u3053\u3068\u304C\u3067\u304D\u308B\u3002 \u4E8C\u6B21\u5143\u7A7A\u9593\u306B\u304A\u3051\u308B\u5186\u5468\u304C\u305D\u3046\u3067\u3042\u3063\u305F\u3088\u3046\u306B\u3001\u4E0E\u3048\u3089\u308C\u305F\u70B9\u304B\u3089\u306E\u8DDD\u96E2\u304C\u4E00\u5B9A\u5024 r \u3092\u3082\u3064\u3088\u3046\u306A\u70B9\u5168\u4F53\u306E\u6210\u3059\u96C6\u5408\uFF08\u305F\u3060\u3057\u4ECA\u306E\u5834\u5408\u306F\u70B9\u306F\u4E09\u6B21\u5143\u7A7A\u9593\u5185\u3067\u3068\u308B\uFF09\u3068\u3057\u3066\u7403\u9762\u3092\u5B9A\u7FA9\u3059\u308B\u3053\u3068\u304C\u3067\u304D\u308B\u3002\u3053\u306E\u3068\u304D\u3001\u4E0E\u3048\u3089\u308C\u305F\u70B9\u3092\u3053\u306E\u7403\u9762\u3042\u308B\u3044\u306F\u7403\u4F53\uFF08\u8DDD\u96E2\u304C r \u4EE5\u4E0B\u306E\u70B9\u5168\u4F53\uFF09\u306E\u4E2D\u5FC3\u3068\u3044\u3044\u3001\u307E\u305F\u8DDD\u96E2 r \u3092\u3053\u306E\u7403\u9762\u3042\u308B\u3044\u306F\u7403\u4F53\u306E\u534A\u5F84\u3068\u547C\u3076\u3002\u7403\u4F53\u306E\u4E2D\u3092\u901A\u308A\u3001\u7403\u9762\u4E0A\u306E\u4E8C\u70B9\u3092\u7D50\u3076\u6700\u9577\u306E\u76F4\u7DDA\uFF08\u7403\u9762\u306E\u5DEE\u3057\u6E21\u3057\uFF09\u306F\u304B\u306A\u3089\u305A\u305D\u306E\u4E2D\u5FC3\u3092\u901A\u308A\u3001\u534A\u5F84\u306E\u4E8C\u500D\u306B\u7B49\u3057\u3044\u3002\u3053\u308C\u3092\u7403\u9762\u3042\u308B\u3044\u306F\u7403\u4F53\u306E\u76F4\u5F84\u3068\u547C\u3076\u3002"@ja , "\u03A3\u03C6\u03B1\u03AF\u03C1\u03B1 \u03BF\u03BD\u03BF\u03BC\u03AC\u03B6\u03B5\u03C4\u03B1\u03B9 \u03BF \u03B3\u03B5\u03C9\u03BC\u03B5\u03C4\u03C1\u03B9\u03BA\u03CC\u03C2 \u03C4\u03CC\u03C0\u03BF\u03C2 \u03C4\u03C9\u03BD \u03C3\u03B7\u03BC\u03B5\u03AF\u03C9\u03BD \u03C0\u03BF\u03C5 \u03B1\u03C0\u03AD\u03C7\u03BF\u03C5\u03BD \u03C3\u03C4\u03B1\u03B8\u03B5\u03C1\u03AE \u03B1\u03C0\u03CC\u03C3\u03C4\u03B1\u03C3\u03B7 \u03C1 \u03B1\u03C0\u03CC \u03AD\u03BD\u03B1 \u03C3\u03B7\u03BC\u03B5\u03AF\u03BF \u039F \u03C3\u03C4\u03BF\u03BD \u03C4\u03C1\u03B9\u03C3\u03B4\u03B9\u03AC\u03C3\u03C4\u03B1\u03C4\u03BF \u03C7\u03CE\u03C1\u03BF. \u03A4\u03BF \u03C3\u03B7\u03BC\u03B5\u03AF\u03BF \u039F \u03BF\u03BD\u03BF\u03BC\u03AC\u03B6\u03B5\u03C4\u03B1\u03B9 \u03BA\u03B1\u03B9 \u03BA\u03AD\u03BD\u03C4\u03C1\u03BF \u03C4\u03B7\u03C2 \u03C3\u03C6\u03B1\u03AF\u03C1\u03B1\u03C2 \u03BA\u03B1\u03B9 \u03B7 \u03B1\u03C0\u03CC\u03C3\u03C4\u03B1\u03C3\u03B7 \u03C1 \u03B1\u03BA\u03C4\u03AF\u03BD\u03B1. \u03A9\u03C2 \u03B4\u03B9\u03AC\u03BC\u03B5\u03C4\u03C1\u03BF\u03C2 \u03C4\u03B7\u03C2 \u03C3\u03C6\u03B1\u03AF\u03C1\u03B1\u03C2 \u03BF\u03C1\u03AF\u03B6\u03B5\u03C4\u03B1\u03B9 \u03C4\u03BF \u03B4\u03B9\u03C0\u03BB\u03AC\u03C3\u03B9\u03BF \u03C4\u03B7\u03C2 \u03B1\u03BA\u03C4\u03AF\u03BD\u03B1\u03C2 \u03C4\u03B7\u03C2 \u03BA\u03B1\u03B9 \u03B5\u03AF\u03BD\u03B1\u03B9 \u03B7 \u03BC\u03AD\u03B3\u03B9\u03C3\u03C4\u03B7 \u03B4\u03C5\u03BD\u03B1\u03C4\u03AE \u03B1\u03C0\u03CC\u03C3\u03C4\u03B1\u03C3\u03B7 \u03B4\u03CD\u03BF \u03C3\u03B7\u03BC\u03B5\u03AF\u03C9\u03BD \u03C4\u03B7\u03C2. \u0397 \u03C3\u03C6\u03B1\u03AF\u03C1\u03B1 \u03B5\u03AF\u03BD\u03B1\u03B9 \u03BC\u03B9\u03B1 \u03B4\u03B9\u03C3\u03B4\u03B9\u03AC\u03C3\u03C4\u03B1\u03C4\u03B7 \u03BA\u03BB\u03B5\u03B9\u03C3\u03C4\u03AE \u03C3\u03C4\u03BF\u03BD \u03C4\u03C1\u03B9\u03C3\u03B4\u03B9\u03AC\u03C3\u03C4\u03B1\u03C4\u03BF \u03C7\u03CE\u03C1\u03BF. \u039C\u03B9\u03B1 \u03C3\u03C6\u03B1\u03B9\u03C1\u03B9\u03BA\u03AE \u03B5\u03C0\u03B9\u03C6\u03AC\u03BD\u03B5\u03B9\u03B1 \u03AD\u03C7\u03B5\u03B9 \u03BA\u03B1\u03BC\u03C0\u03C5\u03BB\u03CC\u03C4\u03B7\u03C4\u03B1 \u03C4\u03AD\u03C4\u03BF\u03B9\u03B1 \u03C0\u03BF\u03C5 \u03B4\u03B5\u03BD \u03B5\u03C0\u03B9\u03C4\u03C1\u03AD\u03C0\u03B5\u03B9 \u03C4\u03B7\u03BD \u03CD\u03C0\u03B1\u03C1\u03BE\u03B7 \u03B5\u03C0\u03AF\u03C0\u03B5\u03B4\u03BF\u03C5 , \u03CC\u03C0\u03C9\u03C2 \u03B1\u03C0\u03AD\u03B4\u03B5\u03B9\u03BE\u03B5 \u03BF \u0391\u03C1\u03C7\u03B9\u03BC\u03AE\u03B4\u03B7\u03C2."@el , "\u7403\u9762 \uFF08\u82F1\u8A9E\uFF1Asphere\uFF09\u662F\u4E09\u7EF4\u7A7A\u95F4\u4E2D\u5B8C\u5168\u5706\u5F62\u7684\u51E0\u4F55\u7269\u4F53\uFF0C\u5B83\u662F\u5706\u7403\u7684\u8868\u9762\uFF08\u7C7B\u4F3C\u4E8E\u5728\u4E8C\u7EF4\u7A7A\u95F4\u4E2D\uFF0C\u201C\u5706 \u201D\u5305\u56F4\u7740\u201C\u5706\u76D8\u201D\u90A3\u6837\uFF09\u3002 \u5C31\u50CF\u5728\u4E8C\u7EF4\u7A7A\u95F4\u4E2D\u7684\u5706\u7684\u5B9A\u4E49\u4E00\u6837\uFF0C\u7403\u9762\u5728\u6570\u5B66\u4E0A\u5B9A\u4E49\u4E3A\u4E09\u7EF4\u7A7A\u95F4\u4E2D\u79BB\u7ED9\u5B9A\u7684\u70B9\u8DDD\u79BB\u76F8\u540C\u7684\u70B9\u7684\u96C6\u5408 r\u3002 \u8FD9\u4E2A\u8DDD\u79BB r \u662F\u7403\u7684\u534A\u5F84 \uFF0C\u7403\uFF08ball\uFF09\u5219\u662F\u7531\u79BB\u7ED9\u5B9A\u70B9\u8DDD\u79BB\u5C0F\u4E8E r \u7684\u6240\u6709\u70B9\u6784\u6210\u7684\u51E0\u4F55\u4F53\uFF0C\u800C\u8FD9\u4E2A\u7ED9\u5B9A\u70B9\u5C31\u662F\u7403\u5FC3\u3002\u7403\u7684\u534A\u5F84\u548C\u7403\u5FC3\u4E5F\u662F\u7403\u9762\u7684\u534A\u5F84\u548C\u4E2D\u5FC3\u3002\u4E24\u7AEF\u90FD\u5728\u7403\u9762\u4E0A\u7684\u6700\u957F\u7EBF\u6BB5\u901A\u8FC7\u7403\u5FC3\uFF0C\u5176\u957F\u5EA6\u662F\u5176\u534A\u5F84\u7684\u4E24\u500D\uFF1B\u5B83\u662F\u7403\u9762\u548C\u7403\u4F53\u7684\u76F4\u5F84 \u3002 \u5C3D\u7BA1\u5728\u6570\u5B66\u4E4B\u5916\uFF0C\u672F\u8BED\u201C\u7403\u9762\u201D\u548C\u201C\u7403\u201D\u6709\u65F6\u53EF\u4E92\u6362\u4F7F\u7528\uFF0C\u4F46\u5728\u6570\u5B66\u4E2D\u662F\u660E\u786E\u533A\u5206\u7684\uFF1A\u7403\u9762\u662F\u4E00\u79CD\u5D4C\u5728\u4E09\u7EF4\u6B27\u51E0\u91CC\u5F97\u7A7A\u95F4\u5185\u7684\u4E8C\u7EF4\u5C01\u95ED\u66F2\u9762\uFF0C\u800C\u7403\u662F\u4E00\u79CD\u4E09\u7EF4\u56FE\u5F62\uFF0C\u5176\u5305\u62EC\u7403\u9762\u548C\u7403\u9762\u5185\u90E8\u7684\u4E00\u5207\uFF08\u95ED\u7403\uFF09\uFF0C\u4E0D\u8FC7\u66F4\u5E38\u89C1\u7684\u5B9A\u4E49\u662F\u53EA\u5305\u62EC\u7403\u9762\u5185\u90E8\u7684\u6240\u6709\u70B9\uFF0C\u4E0D\u5305\u62EC\u7403\u9762\u4E0A\u7684\u70B9\uFF08\u5F00\u7403\uFF09\u3002\u8FD9\u79CD\u533A\u522B\u5E76\u4E0D\u603B\u662F\u4FDD\u6301\u4E0D\u53D8\uFF0C\u5C24\u5176\u662F\u5728\u65E7\u7684\u6570\u5B66\u6587\u732E\u91CC\uFF0Csphere\uFF08\u7403\u9762\uFF09\u88AB\u5F53\u4F5C\u56FA\u4F53\u3002\u8FD9\u4E0E\u5728\u5E73\u9762\u4E0A\u6DF7\u7528\u672F\u8BED\u201C\u5706\u201D\uFF08circle\uFF09\u548C\u201C\u5706\u76D8\u201D\uFF08disk\uFF09\u7684\u60C5\u51B5\u7C7B\u4F3C\u3002"@zh , "\uAE30\uD558\uD559\uC5D0\uC11C, \uAD6C(\u7403, sphere)\uB294 \uD55C \uC810\uACFC\uC758 \uAC70\uB9AC\uAC00 \uAC19\uC740, 3\uCC28\uC6D0 \uACF5\uAC04 \uC704\uC758 \uC810\uB4E4\uB85C \uC774\uB8E8\uC5B4\uC9C4 2\uCC28\uC6D0 \uC774\uB2E4. '\uAD6C'\uB77C\uB294 \uC774\uB984\uC740 \uACF5\uC774\uB780 \uC758\uBBF8\uC758 \uD55C\uC790\uC5D0\uC11C \uC654\uC9C0\uB9CC, \uC218\uD559\uC5D0\uC11C\uC758 \uAD6C\uB294 \uC18D\uC774 \uBE44\uC5B4 \uC788\uB294 '\uAD6C\uBA74'\uC744, \uACF5\uC740 \uC18D\uC774 \uCC28 \uC788\uB294 '\uAD6C\uCCB4'\uB97C \uAC00\uB9AC\uD0A4\uB294 \uB9D0\uC774\uB2E4. \uB370\uCE74\uB974\uD2B8 \uC88C\uD45C\uACC4\uC5D0\uC11C\uB294 \uC911\uC2EC\uC774 (a, b, c)\uC774\uACE0 \uBC18\uC9C0\uB984\uC774 r\uC778 \uAD6C\uB97C \uB77C\uB294 \uBC29\uC815\uC2DD\uC73C\uB85C \uB098\uD0C0\uB0BC \uC218 \uC788\uB2E4. \uB450 \uAC1C\uC758 \uB9E4\uAC1C\uBCC0\uC218 \u03B8 \u2208 [0, 2\u03C0], \u03C6 \u2208 [0, \u03C0]\uB97C \uC774\uC6A9\uD558\uC5EC \uB85C \uD45C\uD604\uD560 \uC218\uB3C4 \uC788\uB2E4."@ko , "Is \u00E1bhar geoim\u00E9adrach le maolaithe go hioml\u00E1n \u00E9 sf\u00E9ar (\u00F3n nGr\u00E9igis: \u03C3\u03C6\u03B1\u1FD6\u03C1\u03B1\u2014sphaira, \"cruinneog, liathr\u00F3id\")."@ga , "\u0421\u0444\u0435\u0301\u0440\u0430 (\u0432\u0456\u0434 \u0433\u0440\u0435\u0446. \u03C3\u03C6\u03B1\u1FD6\u03C1\u03B1 \u2014 \u043A\u0443\u043B\u044F) \u2014 \u0437\u0430\u043C\u043A\u043D\u0443\u0442\u0430 \u043F\u043E\u0432\u0435\u0440\u0445\u043D\u044F, \u0433\u0435\u043E\u043C\u0435\u0442\u0440\u0438\u0447\u043D\u0435 \u043C\u0456\u0441\u0446\u0435 \u0442\u043E\u0447\u043E\u043A \u0440\u0456\u0432\u043D\u043E\u0432\u0456\u0434\u0434\u0430\u043B\u0435\u043D\u0438\u0445 \u0432\u0456\u0434 \u0434\u0430\u043D\u043E\u0457 \u0442\u043E\u0447\u043A\u0438, \u0449\u043E \u0454 \u0446\u0435\u043D\u0442\u0440\u043E\u043C \u0441\u0444\u0435\u0440\u0438. \u0421\u0444\u0435\u0440\u0430 \u0454 \u043E\u043A\u0440\u0435\u043C\u0438\u043C \u0432\u0438\u043F\u0430\u0434\u043A\u043E\u043C \u0435\u043B\u0456\u043F\u0441\u043E\u0457\u0434\u0430, \u0443 \u044F\u043A\u043E\u0433\u043E \u0432\u0441\u0456 \u0442\u0440\u0438 \u043F\u0456\u0432\u043E\u0441\u0456 \u043E\u0434\u043D\u0430\u043A\u043E\u0432\u0456."@uk , "En g\u00E9om\u00E9trie dans l'espace, une sph\u00E8re est une surface constitu\u00E9e de tous les points situ\u00E9s \u00E0 une m\u00EAme distance d'un point appel\u00E9 centre. La valeur de cette distance au centre est le rayon de la sph\u00E8re. La g\u00E9om\u00E9trie sph\u00E9rique est la science qui \u00E9tudie les propri\u00E9t\u00E9s des sph\u00E8res. La surface de la Terre peut, en premi\u00E8re approximation, \u00EAtre mod\u00E9lis\u00E9e par une sph\u00E8re dont le rayon est d'environ 6 371 km. Une sph\u00E8re \u00AB pleine \u00BB est une boule, dont les points ont une distance au centre inf\u00E9rieure ou \u00E9gale au rayon."@fr , "In de meetkunde is een boloppervlak of sfeer een driedimensionale figuur die gevormd wordt door alle punten die op gelijke afstand liggen van een vast punt, het middelpunt van het boloppervlak. Een bol kan zowel opgevat worden als driedimensionale generalisatie van de cirkel, als van de cirkelschijf. Daarnaast wordt met een open bol de open verzameling punten binnen een sfeer en met een gesloten bol de gesloten verzameling punten binnen een sfeer bedoeld."@nl , "A sphere (from Ancient Greek \u03C3\u03C6\u03B1\u1FD6\u03C1\u03B1 (spha\u00EEra) 'globe, ball') is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. A sphere is the set of points that are all at the same distance r from a given point in three-dimensional space. That given point is the centre of the sphere, and r is the sphere's radius. The earliest known mentions of spheres appear in the work of the ancient Greek mathematicians."@en , "\u0421\u0444\u0435\u0301\u0440\u0430 (\u0434\u0440.-\u0433\u0440\u0435\u0447. \u03C3\u03C6\u03B1\u1FD6\u03C1\u03B1 \u00AB\u043C\u044F\u0447, \u0448\u0430\u0440\u00BB) \u2014 \u0433\u0435\u043E\u043C\u0435\u0442\u0440\u0438\u0447\u0435\u0441\u043A\u043E\u0435 \u043C\u0435\u0441\u0442\u043E \u0442\u043E\u0447\u0435\u043A \u0432 \u043F\u0440\u043E\u0441\u0442\u0440\u0430\u043D\u0441\u0442\u0432\u0435, \u0440\u0430\u0432\u043D\u043E\u0443\u0434\u0430\u043B\u0435\u043D\u043D\u044B\u0445 \u043E\u0442 \u043D\u0435\u043A\u043E\u0442\u043E\u0440\u043E\u0439 \u0437\u0430\u0434\u0430\u043D\u043D\u043E\u0439 \u0442\u043E\u0447\u043A\u0438 (\u0446\u0435\u043D\u0442\u0440\u0430 \u0441\u0444\u0435\u0440\u044B). \u0420\u0430\u0441\u0441\u0442\u043E\u044F\u043D\u0438\u0435 \u043E\u0442 \u0442\u043E\u0447\u043A\u0438 \u0441\u0444\u0435\u0440\u044B \u0434\u043E \u0435\u0451 \u0446\u0435\u043D\u0442\u0440\u0430 \u043D\u0430\u0437\u044B\u0432\u0430\u0435\u0442\u0441\u044F \u0440\u0430\u0434\u0438\u0443\u0441\u043E\u043C \u0441\u0444\u0435\u0440\u044B.\u0421\u0444\u0435\u0440\u0430 \u0440\u0430\u0434\u0438\u0443\u0441\u0430 1 \u043D\u0430\u0437\u044B\u0432\u0430\u0435\u0442\u0441\u044F \u0435\u0434\u0438\u043D\u0438\u0447\u043D\u043E\u0439 \u0441\u0444\u0435\u0440\u043E\u0439."@ru , "En sf\u00E4r \u00E4r en klotformad kropps yta. Alla punkter p\u00E5 en sf\u00E4r befinner sig p\u00E5 samma avst\u00E5nd till sf\u00E4rens (centrum) \u2013 detta avst\u00E5nd kallas radie och betecknas r. Sf\u00E4rens area \u00E4r och det tillh\u00F6rande klotets volym \u00E4r F\u00F6r den som vill l\u00E4ra sig formlerna utantill kan det underl\u00E4tta att l\u00E4gga p\u00E5 minnet att uttrycket f\u00F6r arean \u00E4r volymuttryckets derivata med avseende p\u00E5 r. Sf\u00E4ren \u00E4r den minsta yta som kan omsluta en given volym. I naturen \u00E4r exempelvis luftbubblor och vattendroppar (fr\u00E5nsett gravitation eller annan p\u00E5verkan) klotformiga eftersom ytsp\u00E4nningen str\u00E4var efter att minimera ytan."@sv , "Eine Kugel ist in der Geometrie die Kurzbezeichnung f\u00FCr Kugelfl\u00E4che oder Kugelk\u00F6rper."@de , "Esfera (grezieratik: \u03C3\u03C6\u03B1\u03AF\u03C1\u03B1 - sphaira, \"globoa, baloia\") hiru dimentsioko espazioan puntu jakin batetik distantzia berera dauden espazioko puntu guztiek osatzen duten azalera da. Era berean, zirkulu bat bere ardatzaren inguruan biratzen denean sortzen den gorputz geometrikoa ere bada. Alde guztietatik begiratuta, esfera gorputz erabat biribila da."@eu , "V matematice se slovem sf\u00E9ra ozna\u010Duje obvykle , tedy plocha tvo\u0159\u00EDc\u00ED povrch koule. Sf\u00E9ra je definov\u00E1na jako mno\u017Eina v\u0161ech bod\u016F, kter\u00E9 se nach\u00E1zej\u00ED ve vzd\u00E1lenosti r (polom\u011Br) od bodu S (st\u0159ed). Sf\u00E9ra dimenze n se n\u011Bkdy zna\u010D\u00ED n-sf\u00E9ra."@cs , "\u0627\u0644\u0643\u0631\u0629 \u0623\u0648 \u0627\u0644\u0641\u0644\u0643\u0629 \u0633\u0637\u062D \u0647\u0646\u062F\u0633\u064A \u062B\u0646\u0627\u0626\u064A \u062A\u0627\u0645 \u0627\u0644\u062A\u0646\u0627\u0638\u0631\u060C \u064A\u0646\u062A\u062C \u0639\u0646 \u062F\u0648\u0631\u0627\u0646 \u062F\u0627\u0626\u0631\u0629 \u062D\u0648\u0644 \u0623\u062D\u062F \u0623\u0642\u0637\u0627\u0631\u0647\u0627. \u0641\u064A \u0627\u0644\u0647\u0646\u062F\u0633\u0629 \u0627\u0644\u0625\u0642\u0644\u064A\u062F\u064A\u0629 \u062B\u0644\u0627\u062B\u064A\u0629 \u0627\u0644\u0623\u0628\u0639\u0627\u062F \u062A\u0639\u0631\u0641 \u0627\u0644\u0643\u0631\u0629 \u0639\u0644\u0649 \u0623\u0646\u0647\u0627 \u0627\u0644\u0645\u062D\u0644 \u0627\u0644\u0647\u0646\u062F\u0633\u064A \u0644\u0645\u062C\u0645\u0648\u0639\u0629 \u0627\u0644\u0646\u0642\u0627\u0637 \u0627\u0644\u062A\u064A \u062A\u0628\u0639\u062F \u0627\u0644\u0628\u0639\u062F \u0646\u0641\u0633\u0647 \u0648\u0644\u064A\u0643\u0646 r \u0645\u0646 \u0646\u0642\u0637\u0629 \u0645\u0639\u064A\u0646\u0629 \u0641\u064A \u0627\u0644\u0641\u0636\u0627\u0621 \u062D\u064A\u062B r \u0639\u062F\u062F \u0645\u0648\u062C\u0628 (\u0644\u064A\u0633 \u0628\u0627\u0644\u0636\u0631\u0648\u0631\u0629 \u0635\u062D\u064A\u062D\u0627 \u062F\u0627\u0626\u0645\u0627) \u0648\u064A\u0633\u0645\u0649 \u0646\u0635\u0641 \u0627\u0644\u0642\u0637\u0631. \u062A\u0633\u0645\u0649 \u0627\u0644\u0646\u0642\u0637\u0629 \u0627\u0644\u0645\u0639\u064A\u0646\u0629 \u0628\u0645\u0631\u0643\u0632 \u0627\u0644\u0643\u0631\u0629. \u0643\u0631\u0629 \u0627\u0644\u0648\u062D\u062F\u0629 \u0647\u064A \u0627\u0644\u0643\u0631\u0629 \u0627\u0644\u062A\u064A \u064A\u0643\u0648\u0646 \u0646\u0635\u0641 \u0642\u0637\u0631\u0647\u0627 \u064A\u0633\u0627\u0648\u064A 1."@ar , "En geometrio, sfero a\u016D n-sfero a\u016D hipersfero estas (n+1)-dimensia sterna\u0135o, , aro de punktoj de (n+1)-dimensia spaco kies distanco al fiksita punkto de tiu spaco (centro) egalas al r, kiu estas fiksita pozitiva reela nombro, la radiuso de la sfero. Se la dimensio estas N, la sfero kun radiuso r kaj centro c estas la punktaro { |x \u2212 c| = r }. La 1-sfero estas cirklo."@eo , "Sfera (z gr. \u03C3\u03C6\u03B1\u1FD6\u03C1\u03B1 spha\u00EEra \u201Ekula, pi\u0142ka\u201D) \u2013 uog\u00F3lnienie poj\u0119cia okr\u0119gu na wi\u0119cej wymiar\u00F3w. Jest to zbi\u00F3r wszystkich punkt\u00F3w (miejsce geometryczne) w przestrzeni metrycznej oddalonych o ustalon\u0105 odleg\u0142o\u015B\u0107 od wybranego punktu. Ustalona odleg\u0142o\u015B\u0107 nazywa si\u0119 promieniem sfery, wybrany punkt nazywa si\u0119 \u015Brodkiem sfery. Zwykle przyjmuje si\u0119 dodatkowo, \u017Ce promie\u0144 musi by\u0107 dodatni. Tak zdefiniowany zbi\u00F3r jest brzegiem kuli o tym samym \u015Brodku i promieniu. Zazwyczaj jako przestrze\u0144 metryczn\u0105 rozpatruje si\u0119 przestrze\u0144 euklidesow\u0105."@pl , "Bola adalah objek geometri dalam ruang tiga dimensi yang merupakan permukaan dari bola, analog dengan objek melingkar dalam dua dimensi, yaitu \"lingkaran\" adalah batas dari \"cakram\". Seperti lingkaran dalam ruang dua dimensi, bola secara matematis didefinisikan sebagai himpunan titik yang berjarak sama r dari titik tertentu dalam ruang tiga dimensi. Jarak r adalah radius bola, yang terbentuk dari semua titik dengan jarak kurang dari atau, untuk bola tertutup, kurang dari atau sama dengan r dari titik tertentu, yang merupakan matematika bola. Ini juga disebut sebagai jari-jari dan pusat bola. Ruas garis lurus terpanjang melalui bola, menghubungkan dua titik bola, melewati pusat dan panjangnya dengan demikian dua kali jari-jari; itu adalah diameter dari kedua bola dan bolanya."@in , "En geometria, una esfera \u00E9s la superf\u00EDcie formada per tots els punts que es troben a una mateixa dist\u00E0ncia (anomenada radi) d'un punt donat (anomenat centre) de l'espai.El segment que uneix un punt de l'esfera amb el seu centre tamb\u00E9 rep el nom de radi.Una recta que passa pel centre de l'esfera la talla en dos punts; el segment que determinen s'anomena di\u00E0metre. Tots els di\u00E0metres tenen la mateixa longitud, tamb\u00E9 anomenada di\u00E0metre. El di\u00E0metre val el doble que el radi, i \u00E9s la m\u00E0xima dist\u00E0ncia entre dos punts de l'esfera."@ca , "La sfera (dal greco antico: \u03C3\u03C6\u03B1\u1FD6\u03C1\u03B1, spha\u00EEra) \u00E8 il solido geometrico costituito da tutti i punti che sono a distanza minore o uguale a una distanza fissata , detta raggio della sfera, da un punto detto centro della sfera. L'insieme dei punti la cui distanza \u00E8 eguale a \u00E8 detto superficie sferica di centro e raggio . \u00C8 detta \"semisfera\" ciascuna delle met\u00E0 di un solido sferico diviso in due da un piano passante per il centro o anche ciascuna delle due superfici di una sfera divisa da una sua circonferenza massima."@it , "En geometr\u00EDa, una superficie esf\u00E9rica es una superficie de revoluci\u00F3n formada por el conjunto de todos los puntos del espacio que equidistan de un punto llamado centro. Para los puntos cuya distancia es menor que la longitud del radio, se dice que forman el interior de la superficie esf\u00E9rica. La uni\u00F3n del interior y la superficie esf\u00E9rica se llama bola cerrada en topolog\u00EDa, o esfera, como en geometr\u00EDa elemental del espacio.\u200B La esfera es un s\u00F3lido geom\u00E9trico."@es ; rdfs:seeAlso . @prefix dbp: . dbr:Sphere dbp:name "Sphere"@en . @prefix foaf: . dbr:Sphere foaf:depiction , , , , , , , , , , , . @prefix dcterms: . @prefix dbc: . dbr:Sphere dcterms:subject dbc:Topology , dbc:Elementary_geometry , dbc:Differential_geometry , dbc:Surfaces , dbc:Differential_topology , dbc:Homogeneous_spaces , dbc:Elementary_shapes , dbc:Spheres ; dbo:wikiPageID 27859 ; dbo:wikiPageRevisionID 1123692293 ; dbo:wikiPageWikiLink , , dbc:Spheres , dbr:David_Hilbert , dbr:Fused_quartz , dbr:Solid_angle , dbr:Equator , , dbr:Cube , dbr:Isoperimetric_inequality , , dbr:Unit_sphere , dbr:Area_element , dbr:Spherical_polyhedron , dbr:Point_at_infinity , dbr:Rolling , dbr:Orthogonality , dbr:Major_axis , dbr:Napkin_ring_problem , dbr:Area_of_a_disc , dbr:Cartesian_coordinates , dbr:Filling_area_conjecture , , dbr:Alternative_approaches_to_redefining_the_kilogram , dbr:Meissner_body , , dbr:Lenart_Sphere , dbr:Celestial_sphere , dbr:Celestial_spheres , dbr:Polar_orbit , dbr:Analytic_geometry , dbr:Spherical_cow , dbr:King_of_spades , dbr:Astronomy , dbr:Trigonometric_function , dbr:Circle , dbr:Trigonometry , dbr:Pythagorean_theorem , , dbr:Archimedes , dbr:Euler_angles , dbr:Solid_geometry , dbr:Disk_integration , , dbr:Great-circle_distance , dbr:Hand_with_Reflecting_Sphere , dbr:Coplanar , dbr:Longitude , dbr:Helicoid , dbr:Orthogonal_group . @prefix ns9: . dbr:Sphere dbo:wikiPageWikiLink ns9:Uniform_Spherical_Distribution , dbr:Directional_statistics , , dbr:Hoberman_sphere , dbr:Sphere_packing , dbr:Spherical_lune , dbr:Spherical_cap , dbr:Chebyshev_distance , dbr:Classical_geometry , dbr:Circle_of_a_sphere , dbr:Integral , dbr:Three-dimensional_space , dbc:Topology , dbr:Euclidean_space , dbr:Spherical_trigonometry , dbr:Geometry , dbr:Navigation , dbr:Integral_calculus , dbr:Mean_curvature , dbr:Gravity_Probe_B , dbr:Sphere_eversion , dbc:Elementary_geometry , dbr:Octahedron , dbr:Principal_curvature , dbr:Metric_space , dbr:Normal_vector , dbr:Spherical_Earth , dbr:Diameter , dbr:Integer , dbr:Surface_of_revolution , dbr:Gauss_map , dbr:Spherical_segment , dbr:Curvature , dbr:Homology_sphere , , dbr:Spherical_triangle , dbr:Dionysodorus , dbr:Spherical_wedge , dbr:Spherical_coordinates , dbr:Hypersphere , dbr:Dyson_sphere , dbr:Density , dbr:Riemannian_geometry , dbr:Dupin_cyclide , dbr:Diffeomorphic , dbr:Postulate , dbr:Hyperbolic_geometry , dbr:Riemannian_circle , dbr:Specific_surface_area , dbc:Differential_geometry , dbr:Colatitude , , , dbr:Al-Quhi , , dbr:Ball , dbr:Manifold_with_boundary , dbr:Antipodal_point , dbr:Tangent_indicatrix , dbr:Exotic_sphere , dbr:Surface_tension , dbr:Soap_bubble , dbr:Pressure_vessels , dbr:Quadric_surface , dbr:Differential_form , dbr:Arc_length , dbr:Angle , dbr:Real_projective_plane , dbr:Closed_surface , dbr:Implicit_curve , dbr:Geography , , dbr:Cylinder , dbc:Surfaces , , , dbr:Apollonius_of_Perga , dbr:Spheroid , , dbr:Zoll_surface , dbr:Minimal_surface , dbr:Up_to , , dbr:Parallel_postulate , dbr:Inscribed_figure , , , dbr:Dimension , dbr:Martian_spherules , dbr:Affine_transformation , , dbr:Focal_surface , dbr:Riemann_sphere , dbr:Quartic_function , dbr:Volume_element , dbr:Mercator_projection , dbr:Great_circle , , dbr:Channel_surface , dbr:Infinite_number , dbr:Latitude , dbr:Axis_of_rotation , , dbr:Parametric_equation , , dbr:Ball_bearings , , dbr:Geodesic , dbr:Geodesics , dbr:Natural_number , , , dbc:Differential_topology , , dbr:Dihedral_angle , dbr:Derivative , , dbr:Euclidean_metric , dbr:Homotopy_groups_of_spheres , , dbr:Spherical_conic , dbr:Elliptic_geometry , dbr:Euclidean_plane_geometry , dbr:Spherical_spiral , , dbr:Homotopy_sphere , dbr:Method_of_exhaustion , dbr:Surface_area , , dbc:Elementary_shapes , dbc:Homogeneous_spaces , dbr:Volume , dbr:Stephan_Cohn-Vossen , , , dbr:Ellipse , dbr:On_the_Sphere_and_Cylinder , dbr:Spherical_sector , dbr:Torus , , dbr:Discrete_topology , , dbr:Eudoxus_of_Cnidus , dbr:Albert_Einstein , dbr:Ellipsoid , dbr:Ellipsoid_of_revolution , dbr:Refraction , dbr:Topological_manifold , dbr:Umbilic , , dbr:Compact_space , dbr:Mathematics , dbr:Integral_surface , dbr:Pseudosphere , , dbr:Gaussian_curvature , dbr:Topology , dbr:Australia , dbr:Lens , dbr:Circumference , dbr:Umbilical_point , dbr:Theorema_Egregium , dbr:Tennis_ball_theorem , dbr:Circumscribe , dbr:Alexander_horned_sphere , dbr:Similar_triangles , dbr:Smooth_surface , dbr:Algebraic_surface , dbr:Gyroscope , dbr:Manifold , dbr:Map_projection , dbr:Earth , , dbr:Taxicab_geometry , dbr:Spherical_polygon , dbr:Non-Euclidean_geometry , dbr:Curved_mirror , dbr:Embedding , dbr:Conic_section , dbr:Collinear , , dbr:Spherical_zone , dbr:Northern_Hemisphere , dbr:Sphericity , dbr:Affine_sphere , dbr:Homeomorphic , dbr:Greek_mathematics ; dbo:wikiPageExternalLink . @prefix ns10: . dbr:Sphere dbo:wikiPageExternalLink ns10:surface_sphere . @prefix ns11: . dbr:Sphere dbo:wikiPageExternalLink ns11:advancedengineer00krey , ns11:mathematicaluniv00dunh . @prefix ns12: . dbr:Sphere dbo:wikiPageExternalLink ns12:n34 . @prefix dbpedia-de: . dbr:Sphere owl:sameAs dbpedia-de:Kugel , . @prefix dbpedia-sq: . dbr:Sphere owl:sameAs dbpedia-sq:Sfera . @prefix dbpedia-it: . dbr:Sphere owl:sameAs dbpedia-it:Sfera , . @prefix dbpedia-eu: . dbr:Sphere owl:sameAs dbpedia-eu:Esfera . @prefix dbpedia-la: . dbr:Sphere owl:sameAs dbpedia-la:Sphaera . @prefix dbpedia-nn: . dbr:Sphere owl:sameAs dbpedia-nn:Kule . @prefix dbpedia-hr: . dbr:Sphere owl:sameAs dbpedia-hr:Sfera . @prefix ns20: . dbr:Sphere owl:sameAs ns20:Esfera . @prefix dbpedia-ca: . dbr:Sphere owl:sameAs dbpedia-ca:Esfera , , , . @prefix dbpedia-eo: . dbr:Sphere owl:sameAs dbpedia-eo:Sfero . @prefix dbpedia-pl: . dbr:Sphere owl:sameAs dbpedia-pl:Sfera . @prefix dbpedia-war: . dbr:Sphere owl:sameAs dbpedia-war:Espira . @prefix dbpedia-ms: . dbr:Sphere owl:sameAs dbpedia-ms:Sfera , , , , . @prefix ns26: . dbr:Sphere owl:sameAs ns26:Sfera . @prefix dbpedia-pms: . dbr:Sphere owl:sameAs dbpedia-pms:Sfera . @prefix ns28: . dbr:Sphere owl:sameAs ns28:HquZ , . @prefix dbpedia-sw: . dbr:Sphere owl:sameAs dbpedia-sw:Tufe . @prefix dbpedia-pt: . dbr:Sphere owl:sameAs dbpedia-pt:Esfera , , , , , . @prefix ns31: . dbr:Sphere owl:sameAs ns31:Sphera , . @prefix ns32: . dbr:Sphere owl:sameAs ns32:Sfera , , , . @prefix dbpedia-gd: . dbr:Sphere owl:sameAs dbpedia-gd:Cruinne . @prefix dbpedia-sl: . dbr:Sphere owl:sameAs dbpedia-sl:Sfera . @prefix ns35: . dbr:Sphere owl:sameAs ns35:Espera , . @prefix dbpedia-gl: . dbr:Sphere owl:sameAs dbpedia-gl:Esfera . @prefix dbpedia-io: . dbr:Sphere owl:sameAs dbpedia-io:Sfero , , , , . @prefix wikidata: . dbr:Sphere owl:sameAs wikidata:Q12507 , , , , , . @prefix dbpedia-da: . dbr:Sphere owl:sameAs dbpedia-da:Kugle , , , . @prefix dbpedia-no: . dbr:Sphere owl:sameAs dbpedia-no:Kule , , , , , , . @prefix dbpedia-af: . dbr:Sphere owl:sameAs dbpedia-af:Sfeer . @prefix dbpedia-az: . dbr:Sphere owl:sameAs dbpedia-az:Sfera , . @prefix ns43: . dbr:Sphere owl:sameAs ns43:Sfera , . @prefix dbpedia-es: . dbr:Sphere owl:sameAs dbpedia-es:Esfera , , . @prefix dbpedia-sh: . dbr:Sphere owl:sameAs dbpedia-sh:Sfera , , . @prefix dbpedia-simple: . dbr:Sphere owl:sameAs dbpedia-simple:Sphere , . @prefix ns47: . dbr:Sphere owl:sameAs ns47:Buleudan . @prefix dbpedia-commons: . dbr:Sphere owl:sameAs dbpedia-commons:Sphere . @prefix ns49: . dbr:Sphere owl:sameAs ns49:Sfera , , , , , , , , , , . @prefix dbt: . dbr:Sphere dbp:wikiPageUsesTemplate dbt:Wikt-lang , dbt:Citation_needed , dbt:Citation , dbt:Collapse_bottom , dbt:Collapse_top , dbt:Div_col , dbt:Div_col_end , dbt:Compact_topological_surfaces , dbt:Cite_book , dbt:See_also , dbt:Cite_web , dbt:Infobox_polyhedron , dbt:Mvar , dbt:Main , dbt:Use_dmy_dates , dbt:Grc-transl , dbt:Wikisource1911Enc , dbt:Norm , dbt:Anchor , dbt:Short_description , dbt:Px2 , dbt:Sfrac , dbt:Math , dbt:Reflist , dbt:Authority_control , dbt:Pi , dbt:Etymology , dbt:Sister_project_links , dbt:Redirect , dbt:NoteFoot , dbt:NoteTag , dbt:Pp-move-indef , dbt:About , dbt:Spaces ; dbo:thumbnail ; dbp:caption "A perspective projection of a sphere"@en ; dbp:symmetry dbr:Orthogonal_group ; dbp:type dbr:Smooth_surface , dbr:Algebraic_surface ; dbo:abstract "Eine Kugel ist in der Geometrie die Kurzbezeichnung f\u00FCr Kugelfl\u00E4che oder Kugelk\u00F6rper."@de , "Esfera (grezieratik: \u03C3\u03C6\u03B1\u03AF\u03C1\u03B1 - sphaira, \"globoa, baloia\") hiru dimentsioko espazioan puntu jakin batetik distantzia berera dauden espazioko puntu guztiek osatzen duten azalera da. Era berean, zirkulu bat bere ardatzaren inguruan biratzen denean sortzen den gorputz geometrikoa ere bada. Alde guztietatik begiratuta, esfera gorputz erabat biribila da."@eu , "En geometr\u00EDa, una superficie esf\u00E9rica es una superficie de revoluci\u00F3n formada por el conjunto de todos los puntos del espacio que equidistan de un punto llamado centro. Para los puntos cuya distancia es menor que la longitud del radio, se dice que forman el interior de la superficie esf\u00E9rica. La uni\u00F3n del interior y la superficie esf\u00E9rica se llama bola cerrada en topolog\u00EDa, o esfera, como en geometr\u00EDa elemental del espacio.\u200B La esfera es un s\u00F3lido geom\u00E9trico. La esfera, como s\u00F3lido de revoluci\u00F3n, se genera haciendo girar una superficie semicircular alrededor de su di\u00E1metro (Euclides, L. XI, def. 14). Esfera proviene del t\u00E9rmino griego \u03C3\u03C6\u03B1\u1FD6\u03C1\u03B1, spha\u00EEra, que significa pelota (para jugar). Coloquialmente hablando, se emplea la palabra bola, para describir al cuerpo delimitado por una esfera."@es , "\u0421\u0444\u0435\u0301\u0440\u0430 (\u0434\u0440.-\u0433\u0440\u0435\u0447. \u03C3\u03C6\u03B1\u1FD6\u03C1\u03B1 \u00AB\u043C\u044F\u0447, \u0448\u0430\u0440\u00BB) \u2014 \u0433\u0435\u043E\u043C\u0435\u0442\u0440\u0438\u0447\u0435\u0441\u043A\u043E\u0435 \u043C\u0435\u0441\u0442\u043E \u0442\u043E\u0447\u0435\u043A \u0432 \u043F\u0440\u043E\u0441\u0442\u0440\u0430\u043D\u0441\u0442\u0432\u0435, \u0440\u0430\u0432\u043D\u043E\u0443\u0434\u0430\u043B\u0435\u043D\u043D\u044B\u0445 \u043E\u0442 \u043D\u0435\u043A\u043E\u0442\u043E\u0440\u043E\u0439 \u0437\u0430\u0434\u0430\u043D\u043D\u043E\u0439 \u0442\u043E\u0447\u043A\u0438 (\u0446\u0435\u043D\u0442\u0440\u0430 \u0441\u0444\u0435\u0440\u044B). \u0420\u0430\u0441\u0441\u0442\u043E\u044F\u043D\u0438\u0435 \u043E\u0442 \u0442\u043E\u0447\u043A\u0438 \u0441\u0444\u0435\u0440\u044B \u0434\u043E \u0435\u0451 \u0446\u0435\u043D\u0442\u0440\u0430 \u043D\u0430\u0437\u044B\u0432\u0430\u0435\u0442\u0441\u044F \u0440\u0430\u0434\u0438\u0443\u0441\u043E\u043C \u0441\u0444\u0435\u0440\u044B.\u0421\u0444\u0435\u0440\u0430 \u0440\u0430\u0434\u0438\u0443\u0441\u0430 1 \u043D\u0430\u0437\u044B\u0432\u0430\u0435\u0442\u0441\u044F \u0435\u0434\u0438\u043D\u0438\u0447\u043D\u043E\u0439 \u0441\u0444\u0435\u0440\u043E\u0439."@ru , "\u03A3\u03C6\u03B1\u03AF\u03C1\u03B1 \u03BF\u03BD\u03BF\u03BC\u03AC\u03B6\u03B5\u03C4\u03B1\u03B9 \u03BF \u03B3\u03B5\u03C9\u03BC\u03B5\u03C4\u03C1\u03B9\u03BA\u03CC\u03C2 \u03C4\u03CC\u03C0\u03BF\u03C2 \u03C4\u03C9\u03BD \u03C3\u03B7\u03BC\u03B5\u03AF\u03C9\u03BD \u03C0\u03BF\u03C5 \u03B1\u03C0\u03AD\u03C7\u03BF\u03C5\u03BD \u03C3\u03C4\u03B1\u03B8\u03B5\u03C1\u03AE \u03B1\u03C0\u03CC\u03C3\u03C4\u03B1\u03C3\u03B7 \u03C1 \u03B1\u03C0\u03CC \u03AD\u03BD\u03B1 \u03C3\u03B7\u03BC\u03B5\u03AF\u03BF \u039F \u03C3\u03C4\u03BF\u03BD \u03C4\u03C1\u03B9\u03C3\u03B4\u03B9\u03AC\u03C3\u03C4\u03B1\u03C4\u03BF \u03C7\u03CE\u03C1\u03BF. \u03A4\u03BF \u03C3\u03B7\u03BC\u03B5\u03AF\u03BF \u039F \u03BF\u03BD\u03BF\u03BC\u03AC\u03B6\u03B5\u03C4\u03B1\u03B9 \u03BA\u03B1\u03B9 \u03BA\u03AD\u03BD\u03C4\u03C1\u03BF \u03C4\u03B7\u03C2 \u03C3\u03C6\u03B1\u03AF\u03C1\u03B1\u03C2 \u03BA\u03B1\u03B9 \u03B7 \u03B1\u03C0\u03CC\u03C3\u03C4\u03B1\u03C3\u03B7 \u03C1 \u03B1\u03BA\u03C4\u03AF\u03BD\u03B1. \u03A9\u03C2 \u03B4\u03B9\u03AC\u03BC\u03B5\u03C4\u03C1\u03BF\u03C2 \u03C4\u03B7\u03C2 \u03C3\u03C6\u03B1\u03AF\u03C1\u03B1\u03C2 \u03BF\u03C1\u03AF\u03B6\u03B5\u03C4\u03B1\u03B9 \u03C4\u03BF \u03B4\u03B9\u03C0\u03BB\u03AC\u03C3\u03B9\u03BF \u03C4\u03B7\u03C2 \u03B1\u03BA\u03C4\u03AF\u03BD\u03B1\u03C2 \u03C4\u03B7\u03C2 \u03BA\u03B1\u03B9 \u03B5\u03AF\u03BD\u03B1\u03B9 \u03B7 \u03BC\u03AD\u03B3\u03B9\u03C3\u03C4\u03B7 \u03B4\u03C5\u03BD\u03B1\u03C4\u03AE \u03B1\u03C0\u03CC\u03C3\u03C4\u03B1\u03C3\u03B7 \u03B4\u03CD\u03BF \u03C3\u03B7\u03BC\u03B5\u03AF\u03C9\u03BD \u03C4\u03B7\u03C2. \u0397 \u03C3\u03C6\u03B1\u03AF\u03C1\u03B1 \u03B5\u03AF\u03BD\u03B1\u03B9 \u03BC\u03B9\u03B1 \u03B4\u03B9\u03C3\u03B4\u03B9\u03AC\u03C3\u03C4\u03B1\u03C4\u03B7 \u03BA\u03BB\u03B5\u03B9\u03C3\u03C4\u03AE \u03C3\u03C4\u03BF\u03BD \u03C4\u03C1\u03B9\u03C3\u03B4\u03B9\u03AC\u03C3\u03C4\u03B1\u03C4\u03BF \u03C7\u03CE\u03C1\u03BF. \u039C\u03B9\u03B1 \u03C3\u03C6\u03B1\u03B9\u03C1\u03B9\u03BA\u03AE \u03B5\u03C0\u03B9\u03C6\u03AC\u03BD\u03B5\u03B9\u03B1 \u03AD\u03C7\u03B5\u03B9 \u03BA\u03B1\u03BC\u03C0\u03C5\u03BB\u03CC\u03C4\u03B7\u03C4\u03B1 \u03C4\u03AD\u03C4\u03BF\u03B9\u03B1 \u03C0\u03BF\u03C5 \u03B4\u03B5\u03BD \u03B5\u03C0\u03B9\u03C4\u03C1\u03AD\u03C0\u03B5\u03B9 \u03C4\u03B7\u03BD \u03CD\u03C0\u03B1\u03C1\u03BE\u03B7 \u03B5\u03C0\u03AF\u03C0\u03B5\u03B4\u03BF\u03C5 , \u03CC\u03C0\u03C9\u03C2 \u03B1\u03C0\u03AD\u03B4\u03B5\u03B9\u03BE\u03B5 \u03BF \u0391\u03C1\u03C7\u03B9\u03BC\u03AE\u03B4\u03B7\u03C2."@el , "Bola adalah objek geometri dalam ruang tiga dimensi yang merupakan permukaan dari bola, analog dengan objek melingkar dalam dua dimensi, yaitu \"lingkaran\" adalah batas dari \"cakram\". Seperti lingkaran dalam ruang dua dimensi, bola secara matematis didefinisikan sebagai himpunan titik yang berjarak sama r dari titik tertentu dalam ruang tiga dimensi. Jarak r adalah radius bola, yang terbentuk dari semua titik dengan jarak kurang dari atau, untuk bola tertutup, kurang dari atau sama dengan r dari titik tertentu, yang merupakan matematika bola. Ini juga disebut sebagai jari-jari dan pusat bola. Ruas garis lurus terpanjang melalui bola, menghubungkan dua titik bola, melewati pusat dan panjangnya dengan demikian dua kali jari-jari; itu adalah diameter dari kedua bola dan bolanya. Sementara di luar matematika istilah \"bola\" dan \"bola\" terkadang digunakan secara bergantian, dalam matematika perbedaan di atas dibuat dengan antara bola, yang merupakan dua dimensi dalam ruang Euklides tiga dimensi, dan bola, yang merupakan bentuk tiga dimensi yang mencakup bola dan segala sesuatu di dalam bola (bola tertutup), atau, lebih sering, hanya titik di dalam, namun bukan di antara bola (bola terbuka). Ini sejalan dengan situasi dalam bidang, dimana istilah \"lingkaran\" dan \"cakram\" juga dapat dikacaukan."@in , "\u7403\u9762 \uFF08\u82F1\u8A9E\uFF1Asphere\uFF09\u662F\u4E09\u7EF4\u7A7A\u95F4\u4E2D\u5B8C\u5168\u5706\u5F62\u7684\u51E0\u4F55\u7269\u4F53\uFF0C\u5B83\u662F\u5706\u7403\u7684\u8868\u9762\uFF08\u7C7B\u4F3C\u4E8E\u5728\u4E8C\u7EF4\u7A7A\u95F4\u4E2D\uFF0C\u201C\u5706 \u201D\u5305\u56F4\u7740\u201C\u5706\u76D8\u201D\u90A3\u6837\uFF09\u3002 \u5C31\u50CF\u5728\u4E8C\u7EF4\u7A7A\u95F4\u4E2D\u7684\u5706\u7684\u5B9A\u4E49\u4E00\u6837\uFF0C\u7403\u9762\u5728\u6570\u5B66\u4E0A\u5B9A\u4E49\u4E3A\u4E09\u7EF4\u7A7A\u95F4\u4E2D\u79BB\u7ED9\u5B9A\u7684\u70B9\u8DDD\u79BB\u76F8\u540C\u7684\u70B9\u7684\u96C6\u5408 r\u3002 \u8FD9\u4E2A\u8DDD\u79BB r \u662F\u7403\u7684\u534A\u5F84 \uFF0C\u7403\uFF08ball\uFF09\u5219\u662F\u7531\u79BB\u7ED9\u5B9A\u70B9\u8DDD\u79BB\u5C0F\u4E8E r \u7684\u6240\u6709\u70B9\u6784\u6210\u7684\u51E0\u4F55\u4F53\uFF0C\u800C\u8FD9\u4E2A\u7ED9\u5B9A\u70B9\u5C31\u662F\u7403\u5FC3\u3002\u7403\u7684\u534A\u5F84\u548C\u7403\u5FC3\u4E5F\u662F\u7403\u9762\u7684\u534A\u5F84\u548C\u4E2D\u5FC3\u3002\u4E24\u7AEF\u90FD\u5728\u7403\u9762\u4E0A\u7684\u6700\u957F\u7EBF\u6BB5\u901A\u8FC7\u7403\u5FC3\uFF0C\u5176\u957F\u5EA6\u662F\u5176\u534A\u5F84\u7684\u4E24\u500D\uFF1B\u5B83\u662F\u7403\u9762\u548C\u7403\u4F53\u7684\u76F4\u5F84 \u3002 \u5C3D\u7BA1\u5728\u6570\u5B66\u4E4B\u5916\uFF0C\u672F\u8BED\u201C\u7403\u9762\u201D\u548C\u201C\u7403\u201D\u6709\u65F6\u53EF\u4E92\u6362\u4F7F\u7528\uFF0C\u4F46\u5728\u6570\u5B66\u4E2D\u662F\u660E\u786E\u533A\u5206\u7684\uFF1A\u7403\u9762\u662F\u4E00\u79CD\u5D4C\u5728\u4E09\u7EF4\u6B27\u51E0\u91CC\u5F97\u7A7A\u95F4\u5185\u7684\u4E8C\u7EF4\u5C01\u95ED\u66F2\u9762\uFF0C\u800C\u7403\u662F\u4E00\u79CD\u4E09\u7EF4\u56FE\u5F62\uFF0C\u5176\u5305\u62EC\u7403\u9762\u548C\u7403\u9762\u5185\u90E8\u7684\u4E00\u5207\uFF08\u95ED\u7403\uFF09\uFF0C\u4E0D\u8FC7\u66F4\u5E38\u89C1\u7684\u5B9A\u4E49\u662F\u53EA\u5305\u62EC\u7403\u9762\u5185\u90E8\u7684\u6240\u6709\u70B9\uFF0C\u4E0D\u5305\u62EC\u7403\u9762\u4E0A\u7684\u70B9\uFF08\u5F00\u7403\uFF09\u3002\u8FD9\u79CD\u533A\u522B\u5E76\u4E0D\u603B\u662F\u4FDD\u6301\u4E0D\u53D8\uFF0C\u5C24\u5176\u662F\u5728\u65E7\u7684\u6570\u5B66\u6587\u732E\u91CC\uFF0Csphere\uFF08\u7403\u9762\uFF09\u88AB\u5F53\u4F5C\u56FA\u4F53\u3002\u8FD9\u4E0E\u5728\u5E73\u9762\u4E0A\u6DF7\u7528\u672F\u8BED\u201C\u5706\u201D\uFF08circle\uFF09\u548C\u201C\u5706\u76D8\u201D\uFF08disk\uFF09\u7684\u60C5\u51B5\u7C7B\u4F3C\u3002"@zh , "Sfera (z gr. \u03C3\u03C6\u03B1\u1FD6\u03C1\u03B1 spha\u00EEra \u201Ekula, pi\u0142ka\u201D) \u2013 uog\u00F3lnienie poj\u0119cia okr\u0119gu na wi\u0119cej wymiar\u00F3w. Jest to zbi\u00F3r wszystkich punkt\u00F3w (miejsce geometryczne) w przestrzeni metrycznej oddalonych o ustalon\u0105 odleg\u0142o\u015B\u0107 od wybranego punktu. Ustalona odleg\u0142o\u015B\u0107 nazywa si\u0119 promieniem sfery, wybrany punkt nazywa si\u0119 \u015Brodkiem sfery. Zwykle przyjmuje si\u0119 dodatkowo, \u017Ce promie\u0144 musi by\u0107 dodatni. Tak zdefiniowany zbi\u00F3r jest brzegiem kuli o tym samym \u015Brodku i promieniu. Zazwyczaj jako przestrze\u0144 metryczn\u0105 rozpatruje si\u0119 przestrze\u0144 euklidesow\u0105."@pl , "A esfera pode ser definida como \"uma sequ\u00EAncia de pontos alinhados em todos os sentidos \u00E0 mesma dist\u00E2ncia de um centro comum\". \u00C9 tida tamb\u00E9m como um s\u00F3lido geom\u00E9trico formado por uma superf\u00EDcie curva cont\u00EDnua, cujos pontos est\u00E3o equidistantes de um outro fixo e interior, chamado centro, ou seja: \u00E9 uma superf\u00EDcie fechada de tal forma que todos os pontos dela est\u00E3o \u00E0 mesma dist\u00E2ncia de seu centro; ou ainda: de qualquer ponto de vista de sua superf\u00EDcie, a dist\u00E2ncia ao centro \u00E9 a mesma. A esfera pode ser obtida atrav\u00E9s do movimento de rota\u00E7\u00E3o de um semic\u00EDrculo em torno de seu di\u00E2metro. Uma esfera \u00E9 um objeto tridimensional perfeitamente sim\u00E9trico. Na matem\u00E1tica, o termo se refere \u00E0 superf\u00EDcie de uma bola. Na f\u00EDsica, esfera \u00E9 um objeto (usado muitas vezes por causa de sua simplicidade) capaz de colidir ou chocar-se com outros objetos que ocupam espa\u00E7o. Quanto \u00E0 geometria anal\u00EDtica, uma esfera \u00E9 representada (em coordenadas retangulares) pela equa\u00E7\u00E3o: em que a, b, c s\u00E3o as coordenadas do centro da esfera nos eixos x, y, z respectivamente, e r \u00E9 o raio da esfera.A esfera \u00E9 uma forma circular ou seja esf\u00E9rica como a forma de uma bola."@pt , "En geometrio, sfero a\u016D n-sfero a\u016D hipersfero estas (n+1)-dimensia sterna\u0135o, , aro de punktoj de (n+1)-dimensia spaco kies distanco al fiksita punkto de tiu spaco (centro) egalas al r, kiu estas fiksita pozitiva reela nombro, la radiuso de la sfero. La plej kutima estas 2-dimensia sfero, pilko- respektive globoforma kava objekto, surfaco, kiu estas formata de \u0109iuj da la punktoj egaldistance for centra punkto en tridimensia spaco. Tiel, in e\u016Dklida geometrio, \u011Di estas punktaro en \u211D\u00B3, kie estas for distanco r de fiksita punkto de tiu spaco, kaj r estas pozitiva reela nombro nomata kiel la radiuso de la sfero. La fiksata punkta estas nomata la centro, kaj ne estas parto de la sfero mem. La speciala sfero, kiu havas r = 1, estas nomata kiel unuobla sfero. Se la dimensio estas N, la sfero kun radiuso r kaj centro c estas la punktaro { |x \u2212 c| = r }. La 1-sfero estas cirklo."@eo , "La sfera (dal greco antico: \u03C3\u03C6\u03B1\u1FD6\u03C1\u03B1, spha\u00EEra) \u00E8 il solido geometrico costituito da tutti i punti che sono a distanza minore o uguale a una distanza fissata , detta raggio della sfera, da un punto detto centro della sfera. L'insieme dei punti la cui distanza \u00E8 eguale a \u00E8 detto superficie sferica di centro e raggio . \u00C8 detta \"semisfera\" ciascuna delle met\u00E0 di un solido sferico diviso in due da un piano passante per il centro o anche ciascuna delle due superfici di una sfera divisa da una sua circonferenza massima."@it , "Is \u00E1bhar geoim\u00E9adrach le maolaithe go hioml\u00E1n \u00E9 sf\u00E9ar (\u00F3n nGr\u00E9igis: \u03C3\u03C6\u03B1\u1FD6\u03C1\u03B1\u2014sphaira, \"cruinneog, liathr\u00F3id\")."@ga , "En sf\u00E4r \u00E4r en klotformad kropps yta. Alla punkter p\u00E5 en sf\u00E4r befinner sig p\u00E5 samma avst\u00E5nd till sf\u00E4rens (centrum) \u2013 detta avst\u00E5nd kallas radie och betecknas r. Sf\u00E4rens area \u00E4r och det tillh\u00F6rande klotets volym \u00E4r F\u00F6r den som vill l\u00E4ra sig formlerna utantill kan det underl\u00E4tta att l\u00E4gga p\u00E5 minnet att uttrycket f\u00F6r arean \u00E4r volymuttryckets derivata med avseende p\u00E5 r. Sf\u00E4ren \u00E4r den minsta yta som kan omsluta en given volym. I naturen \u00E4r exempelvis luftbubblor och vattendroppar (fr\u00E5nsett gravitation eller annan p\u00E5verkan) klotformiga eftersom ytsp\u00E4nningen str\u00E4var efter att minimera ytan. En sf\u00E4r eller ett klot som omsluts av en cylinder har en volym som \u00E4r 2/3 av cylinderns volym, vilket (tillsammans med formlerna f\u00F6r sf\u00E4rens yta och volym) redan Arkimedes k\u00E4nde till."@sv , "En g\u00E9om\u00E9trie dans l'espace, une sph\u00E8re est une surface constitu\u00E9e de tous les points situ\u00E9s \u00E0 une m\u00EAme distance d'un point appel\u00E9 centre. La valeur de cette distance au centre est le rayon de la sph\u00E8re. La g\u00E9om\u00E9trie sph\u00E9rique est la science qui \u00E9tudie les propri\u00E9t\u00E9s des sph\u00E8res. La surface de la Terre peut, en premi\u00E8re approximation, \u00EAtre mod\u00E9lis\u00E9e par une sph\u00E8re dont le rayon est d'environ 6 371 km. Plus g\u00E9n\u00E9ralement en math\u00E9matiques, dans un espace m\u00E9trique, une sph\u00E8re est l'ensemble des points situ\u00E9s \u00E0 m\u00EAme distance d'un centre. Leur forme peut alors \u00EAtre tr\u00E8s diff\u00E9rente de la forme ronde usuelle. Une sph\u00E8re est \u00E9galement un ellipso\u00EFde d\u00E9g\u00E9n\u00E9r\u00E9. Une sph\u00E8re \u00AB pleine \u00BB est une boule, dont les points ont une distance au centre inf\u00E9rieure ou \u00E9gale au rayon."@fr , "In de meetkunde is een boloppervlak of sfeer een driedimensionale figuur die gevormd wordt door alle punten die op gelijke afstand liggen van een vast punt, het middelpunt van het boloppervlak. Een bol kan zowel opgevat worden als driedimensionale generalisatie van de cirkel, als van de cirkelschijf. Daarnaast wordt met een open bol de open verzameling punten binnen een sfeer en met een gesloten bol de gesloten verzameling punten binnen een sfeer bedoeld."@nl , "A sphere (from Ancient Greek \u03C3\u03C6\u03B1\u1FD6\u03C1\u03B1 (spha\u00EEra) 'globe, ball') is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. A sphere is the set of points that are all at the same distance r from a given point in three-dimensional space. That given point is the centre of the sphere, and r is the sphere's radius. The earliest known mentions of spheres appear in the work of the ancient Greek mathematicians. The sphere is a fundamental object in many fields of mathematics. Spheres and nearly-spherical shapes also appear in nature and industry. Bubbles such as soap bubbles take a spherical shape in equilibrium. The Earth is often approximated as a sphere in geography, and the celestial sphere is an important concept in astronomy. Manufactured items including pressure vessels and most curved mirrors and lenses are based on spheres. Spheres roll smoothly in any direction, so most balls used in sports and toys are spherical, as are ball bearings."@en , "\u0627\u0644\u0643\u0631\u0629 \u0623\u0648 \u0627\u0644\u0641\u0644\u0643\u0629 \u0633\u0637\u062D \u0647\u0646\u062F\u0633\u064A \u062B\u0646\u0627\u0626\u064A \u062A\u0627\u0645 \u0627\u0644\u062A\u0646\u0627\u0638\u0631\u060C \u064A\u0646\u062A\u062C \u0639\u0646 \u062F\u0648\u0631\u0627\u0646 \u062F\u0627\u0626\u0631\u0629 \u062D\u0648\u0644 \u0623\u062D\u062F \u0623\u0642\u0637\u0627\u0631\u0647\u0627. \u0641\u064A \u0627\u0644\u0647\u0646\u062F\u0633\u0629 \u0627\u0644\u0625\u0642\u0644\u064A\u062F\u064A\u0629 \u062B\u0644\u0627\u062B\u064A\u0629 \u0627\u0644\u0623\u0628\u0639\u0627\u062F \u062A\u0639\u0631\u0641 \u0627\u0644\u0643\u0631\u0629 \u0639\u0644\u0649 \u0623\u0646\u0647\u0627 \u0627\u0644\u0645\u062D\u0644 \u0627\u0644\u0647\u0646\u062F\u0633\u064A \u0644\u0645\u062C\u0645\u0648\u0639\u0629 \u0627\u0644\u0646\u0642\u0627\u0637 \u0627\u0644\u062A\u064A \u062A\u0628\u0639\u062F \u0627\u0644\u0628\u0639\u062F \u0646\u0641\u0633\u0647 \u0648\u0644\u064A\u0643\u0646 r \u0645\u0646 \u0646\u0642\u0637\u0629 \u0645\u0639\u064A\u0646\u0629 \u0641\u064A \u0627\u0644\u0641\u0636\u0627\u0621 \u062D\u064A\u062B r \u0639\u062F\u062F \u0645\u0648\u062C\u0628 (\u0644\u064A\u0633 \u0628\u0627\u0644\u0636\u0631\u0648\u0631\u0629 \u0635\u062D\u064A\u062D\u0627 \u062F\u0627\u0626\u0645\u0627) \u0648\u064A\u0633\u0645\u0649 \u0646\u0635\u0641 \u0627\u0644\u0642\u0637\u0631. \u062A\u0633\u0645\u0649 \u0627\u0644\u0646\u0642\u0637\u0629 \u0627\u0644\u0645\u0639\u064A\u0646\u0629 \u0628\u0645\u0631\u0643\u0632 \u0627\u0644\u0643\u0631\u0629. \u0643\u0631\u0629 \u0627\u0644\u0648\u062D\u062F\u0629 \u0647\u064A \u0627\u0644\u0643\u0631\u0629 \u0627\u0644\u062A\u064A \u064A\u0643\u0648\u0646 \u0646\u0635\u0641 \u0642\u0637\u0631\u0647\u0627 \u064A\u0633\u0627\u0648\u064A 1."@ar , "En geometria, una esfera \u00E9s la superf\u00EDcie formada per tots els punts que es troben a una mateixa dist\u00E0ncia (anomenada radi) d'un punt donat (anomenat centre) de l'espai.El segment que uneix un punt de l'esfera amb el seu centre tamb\u00E9 rep el nom de radi.Una recta que passa pel centre de l'esfera la talla en dos punts; el segment que determinen s'anomena di\u00E0metre. Tots els di\u00E0metres tenen la mateixa longitud, tamb\u00E9 anomenada di\u00E0metre. El di\u00E0metre val el doble que el radi, i \u00E9s la m\u00E0xima dist\u00E0ncia entre dos punts de l'esfera. En llenguatge com\u00FA tamb\u00E9 s'anomena esfera la regi\u00F3 s\u00F2lida limitada per una superf\u00EDcie esf\u00E8rica, tot i que el terme matem\u00E0tic per designar aquesta regi\u00F3 \u00E9s bola. El nom de l'esfera prov\u00E9 del terme grec \u03C3\u03C6\u03B1\u1FD6\u03C1\u03B1, sfa\u00EEra, \u00ABbola\u00BB."@ca , "V matematice se slovem sf\u00E9ra ozna\u010Duje obvykle , tedy plocha tvo\u0159\u00EDc\u00ED povrch koule. Sf\u00E9ra je definov\u00E1na jako mno\u017Eina v\u0161ech bod\u016F, kter\u00E9 se nach\u00E1zej\u00ED ve vzd\u00E1lenosti r (polom\u011Br) od bodu S (st\u0159ed). Sf\u00E9ra dimenze n se n\u011Bkdy zna\u010D\u00ED n-sf\u00E9ra."@cs , "\u521D\u7B49\u5E7E\u4F55\u5B66\u306B\u304A\u3051\u308B\u7403\u9762\uFF08\u304D\u3085\u3046\u3081\u3093\u3001\u82F1: sphere\uFF09\u306F\u3001\u5B8C\u5168\u7403\u4F53 (ball) \u306E\u8868\u9762\u3092\u6210\u3059\u4E09\u6B21\u5143\u7A7A\u9593\u5185\u306E\u307E\u3063\u305F\u304F\u4E38\u3044\u3067\u3042\u308B\u3002\u4E8C\u6B21\u5143\u306E\u5834\u5408\u306B\u3001\u5186\u677F\u306E\u5883\u754C\u304C\u5186\u5468\u3067\u3042\u308B\u3068\u3044\u3046\u95A2\u4FC2\u306E\u4E09\u6B21\u5143\u7684\u306A\u5BFE\u5FDC\u7269\u3068\u8003\u3048\u308B\u3053\u3068\u304C\u3067\u304D\u308B\u3002 \u4E8C\u6B21\u5143\u7A7A\u9593\u306B\u304A\u3051\u308B\u5186\u5468\u304C\u305D\u3046\u3067\u3042\u3063\u305F\u3088\u3046\u306B\u3001\u4E0E\u3048\u3089\u308C\u305F\u70B9\u304B\u3089\u306E\u8DDD\u96E2\u304C\u4E00\u5B9A\u5024 r \u3092\u3082\u3064\u3088\u3046\u306A\u70B9\u5168\u4F53\u306E\u6210\u3059\u96C6\u5408\uFF08\u305F\u3060\u3057\u4ECA\u306E\u5834\u5408\u306F\u70B9\u306F\u4E09\u6B21\u5143\u7A7A\u9593\u5185\u3067\u3068\u308B\uFF09\u3068\u3057\u3066\u7403\u9762\u3092\u5B9A\u7FA9\u3059\u308B\u3053\u3068\u304C\u3067\u304D\u308B\u3002\u3053\u306E\u3068\u304D\u3001\u4E0E\u3048\u3089\u308C\u305F\u70B9\u3092\u3053\u306E\u7403\u9762\u3042\u308B\u3044\u306F\u7403\u4F53\uFF08\u8DDD\u96E2\u304C r \u4EE5\u4E0B\u306E\u70B9\u5168\u4F53\uFF09\u306E\u4E2D\u5FC3\u3068\u3044\u3044\u3001\u307E\u305F\u8DDD\u96E2 r \u3092\u3053\u306E\u7403\u9762\u3042\u308B\u3044\u306F\u7403\u4F53\u306E\u534A\u5F84\u3068\u547C\u3076\u3002\u7403\u4F53\u306E\u4E2D\u3092\u901A\u308A\u3001\u7403\u9762\u4E0A\u306E\u4E8C\u70B9\u3092\u7D50\u3076\u6700\u9577\u306E\u76F4\u7DDA\uFF08\u7403\u9762\u306E\u5DEE\u3057\u6E21\u3057\uFF09\u306F\u304B\u306A\u3089\u305A\u305D\u306E\u4E2D\u5FC3\u3092\u901A\u308A\u3001\u534A\u5F84\u306E\u4E8C\u500D\u306B\u7B49\u3057\u3044\u3002\u3053\u308C\u3092\u7403\u9762\u3042\u308B\u3044\u306F\u7403\u4F53\u306E\u76F4\u5F84\u3068\u547C\u3076\u3002 \u7DE9\u3044\u8A00\u3044\u65B9\u3084\u6570\u5B66\u4EE5\u5916\u306E\u6587\u8108\u3067\u306F\u3001\u300C\u7403\u300D\u304C\u300C\u7403\u9762\u300D\u3068\u300C\u7403\u4F53\u300D\u306E\u3069\u3061\u3089\u306E\u610F\u5473\u3067\u3082\u7528\u3044\u3089\u308C\u305F\u308A\u3001\"sphere\" \u3068 \"ball\" \u306E\u610F\u5473\u304C\u5165\u308C\u9055\u3063\u3066\u3044\u305F\u308A\u3059\u308B\u3053\u3068\u3082\u3042\u308B\u304C\u3001\u6570\u5B66\u7684\u306B\u306F\u7403\u9762 (sphere) \u306F\u4E09\u6B21\u5143\u30E6\u30FC\u30AF\u30EA\u30C3\u30C9\u7A7A\u9593\u306B\u57CB\u3081\u8FBC\u307E\u308C\u305F\u4E8C\u6B21\u5143\u9589\u66F2\u9762\u3067\u3042\u308A\u3001\u7403\u4F53 (ball) \u306F\u4E09\u6B21\u5143\u7A7A\u9593\u5185\u306E\u7403\u9762\u304A\u3088\u3073\u7403\u9762\u306E\u56F2\u3080\u300C\u5185\u5074\u300D\u3092\u8A00\u3046\u3068\u3044\u3046\u533A\u5225\u306F\u78BA\u7ACB\u3055\u308C\u305F\u3082\u306E\u3067\u3042\u308B\uFF08\u3044\u307E\u306E\u3088\u3046\u306B\u7403\u9762\u3092\u542B\u3081\u308B\u5834\u5408\u3092\u7279\u306B\u300C\u9589\u7403\u4F53\u300D\u3068\u547C\u3073\u3001\u56F2\u3080\u9818\u57DF\u306B\u7403\u9762\u3092\u307E\u3063\u305F\u304F\u542B\u3081\u306A\u3044\u5834\u5408\u306B\u306F\u300C\u958B\u7403\u4F53\u300D\u3068\u547C\u3076\uFF09\u3002\u3053\u306E\u533A\u5225\u306F\u5FC5\u305A\u5B88\u3089\u308C\u308B\u3068\u3044\u3046\u3088\u3046\u306A\u3082\u306E\u3067\u306F\u306A\u3044\u3057\u3001\u7279\u306B\u53E4\u3044\u6587\u732E\u3067\u306F\u4E2D\u8EAB\u306E\u8A70\u307E\u3063\u305F\u56F3\u5F62\u3092\u300C\u7403\u300D(sphere) \u3068\u3057\u3066\u3044\u308B\u3002\u3053\u308C\u306F\u4E8C\u6B21\u5143\u306E\u5834\u5408\u306B\u3001\u300C\u5186\u300D\u304C\uFF08\u4E2D\u8EAB\u306E\u8A70\u307E\u3063\u305F\uFF09\u300C\u5186\u677F\u300D\u306E\u610F\u5473\u3060\u3063\u305F\u308A\uFF08\u5883\u754C\u3067\u3042\u308B\uFF09\u300C\u5186\u5468\u300D\u306E\u610F\u5473\u3060\u3063\u305F\u308A\u3059\u308B\u306E\u3068\u3061\u3087\u3046\u3069\u540C\u3058\u3067\u3042\u308B\u3002"@ja , "\uAE30\uD558\uD559\uC5D0\uC11C, \uAD6C(\u7403, sphere)\uB294 \uD55C \uC810\uACFC\uC758 \uAC70\uB9AC\uAC00 \uAC19\uC740, 3\uCC28\uC6D0 \uACF5\uAC04 \uC704\uC758 \uC810\uB4E4\uB85C \uC774\uB8E8\uC5B4\uC9C4 2\uCC28\uC6D0 \uC774\uB2E4. '\uAD6C'\uB77C\uB294 \uC774\uB984\uC740 \uACF5\uC774\uB780 \uC758\uBBF8\uC758 \uD55C\uC790\uC5D0\uC11C \uC654\uC9C0\uB9CC, \uC218\uD559\uC5D0\uC11C\uC758 \uAD6C\uB294 \uC18D\uC774 \uBE44\uC5B4 \uC788\uB294 '\uAD6C\uBA74'\uC744, \uACF5\uC740 \uC18D\uC774 \uCC28 \uC788\uB294 '\uAD6C\uCCB4'\uB97C \uAC00\uB9AC\uD0A4\uB294 \uB9D0\uC774\uB2E4. \uB370\uCE74\uB974\uD2B8 \uC88C\uD45C\uACC4\uC5D0\uC11C\uB294 \uC911\uC2EC\uC774 (a, b, c)\uC774\uACE0 \uBC18\uC9C0\uB984\uC774 r\uC778 \uAD6C\uB97C \uB77C\uB294 \uBC29\uC815\uC2DD\uC73C\uB85C \uB098\uD0C0\uB0BC \uC218 \uC788\uB2E4. \uB450 \uAC1C\uC758 \uB9E4\uAC1C\uBCC0\uC218 \u03B8 \u2208 [0, 2\u03C0], \u03C6 \u2208 [0, \u03C0]\uB97C \uC774\uC6A9\uD558\uC5EC \uB85C \uD45C\uD604\uD560 \uC218\uB3C4 \uC788\uB2E4."@ko , "\u0421\u0444\u0435\u0301\u0440\u0430 (\u0432\u0456\u0434 \u0433\u0440\u0435\u0446. \u03C3\u03C6\u03B1\u1FD6\u03C1\u03B1 \u2014 \u043A\u0443\u043B\u044F) \u2014 \u0437\u0430\u043C\u043A\u043D\u0443\u0442\u0430 \u043F\u043E\u0432\u0435\u0440\u0445\u043D\u044F, \u0433\u0435\u043E\u043C\u0435\u0442\u0440\u0438\u0447\u043D\u0435 \u043C\u0456\u0441\u0446\u0435 \u0442\u043E\u0447\u043E\u043A \u0440\u0456\u0432\u043D\u043E\u0432\u0456\u0434\u0434\u0430\u043B\u0435\u043D\u0438\u0445 \u0432\u0456\u0434 \u0434\u0430\u043D\u043E\u0457 \u0442\u043E\u0447\u043A\u0438, \u0449\u043E \u0454 \u0446\u0435\u043D\u0442\u0440\u043E\u043C \u0441\u0444\u0435\u0440\u0438. \u0421\u0444\u0435\u0440\u0430 \u0454 \u043E\u043A\u0440\u0435\u043C\u0438\u043C \u0432\u0438\u043F\u0430\u0434\u043A\u043E\u043C \u0435\u043B\u0456\u043F\u0441\u043E\u0457\u0434\u0430, \u0443 \u044F\u043A\u043E\u0433\u043E \u0432\u0441\u0456 \u0442\u0440\u0438 \u043F\u0456\u0432\u043E\u0441\u0456 \u043E\u0434\u043D\u0430\u043A\u043E\u0432\u0456."@uk ; dbp:euler 2 . @prefix gold: . dbr:Sphere gold:hypernym dbr:Surface . @prefix prov: . dbr:Sphere prov:wasDerivedFrom . @prefix xsd: . dbr:Sphere dbo:wikiPageLength "41780"^^xsd:nonNegativeInteger . @prefix wikipedia-en: . dbr:Sphere foaf:isPrimaryTopicOf wikipedia-en:Sphere .