"\u0422\u043E\u0447\u043A\u0430 \u041F\u043E\u043D\u0441\u0435\u043B\u0435 \u2014 \u043F\u0440\u0435\u0434\u043C\u0435\u0442 \u0441\u043B\u0435\u0434\u0443\u044E\u0449\u0435\u0439 \u0442\u0435\u043E\u0440\u0435\u043C\u044B:"@ru . "619961052"^^ . . . . . . "6811772"^^ . . . "\u0422\u043E\u0447\u043A\u0430 \u041F\u043E\u043D\u0441\u0435\u043B\u0435"@ru . . . . "Poncelet point"@en . . . "In geometry, the Poncelet point of four given points is defined as follows: Let A, B, C, and D be four points in the plane that do not form an orthocentric system. The nine-point circles of triangles ABC, BCD, CDA, DAB meet at one point, the Poncelet point of the points A, B, C, and D. If A, B, C, and D be four points in the plane that form an orthocentric system then triangles ABC, BCD, CDA, DAB all share the same nine-point circle."@en . "In geometry, the Poncelet point of four given points is defined as follows: Let A, B, C, and D be four points in the plane that do not form an orthocentric system. The nine-point circles of triangles ABC, BCD, CDA, DAB meet at one point, the Poncelet point of the points A, B, C, and D. If A, B, C, and D be four points in the plane that form an orthocentric system then triangles ABC, BCD, CDA, DAB all share the same nine-point circle."@en . . . . "916"^^ . . . "\u0422\u043E\u0447\u043A\u0430 \u041F\u043E\u043D\u0441\u0435\u043B\u0435 \u2014 \u043F\u0440\u0435\u0434\u043C\u0435\u0442 \u0441\u043B\u0435\u0434\u0443\u044E\u0449\u0435\u0439 \u0442\u0435\u043E\u0440\u0435\u043C\u044B:"@ru . .