This HTML5 document contains 27 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

PrefixNamespace IRI
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
n10http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
n9http://ta.dbpedia.org/resource/
n6https://global.dbpedia.org/id/
dbpedia-ruhttp://ru.dbpedia.org/resource/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n11http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n20http://forumgeom.fau.edu/FG2009volume9/
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/
Subject Item
dbr:Poncelet_point
rdfs:label
Точка Понселе Poncelet point
rdfs:comment
Точка Понселе — предмет следующей теоремы: In geometry, the Poncelet point of four given points is defined as follows: Let A, B, C, and D be four points in the plane that do not form an orthocentric system. The nine-point circles of triangles ABC, BCD, CDA, DAB meet at one point, the Poncelet point of the points A, B, C, and D. If A, B, C, and D be four points in the plane that form an orthocentric system then triangles ABC, BCD, CDA, DAB all share the same nine-point circle.
foaf:depiction
n11:Poncelet_point.svg
foaf:isPrimaryTopicOf
wikipedia-en:Poncelet_point
dbo:thumbnail
n11:Poncelet_point.svg?width=300
dct:subject
dbc:Euclidean_plane_geometry
dbo:wikiPageID
6811772
dbo:wikiPageRevisionID
619961052
dbo:wikiPageWikiLink
dbr:Geometry dbr:Nine-point_circle n10:Poncelet_point.svg dbc:Euclidean_plane_geometry dbr:Orthocentric_system
dbo:wikiPageExternalLink
n20:FG2009Volume9.pdf%23page=51%7Cvolume=9%7Cyear=2009%7Cpages=47%E2%80%9355
owl:sameAs
n6:48khz n9:போன்செலே_புள்ளி freebase:m.0gq4q7 dbpedia-ru:Точка_Понселе wikidata:Q4461560
dbp:wikiPageUsesTemplate
dbt:Elementary-geometry-stub dbt:Citation
dbo:abstract
In geometry, the Poncelet point of four given points is defined as follows: Let A, B, C, and D be four points in the plane that do not form an orthocentric system. The nine-point circles of triangles ABC, BCD, CDA, DAB meet at one point, the Poncelet point of the points A, B, C, and D. If A, B, C, and D be four points in the plane that form an orthocentric system then triangles ABC, BCD, CDA, DAB all share the same nine-point circle. Точка Понселе — предмет следующей теоремы:
prov:wasDerivedFrom
wikipedia-en:Poncelet_point?oldid=619961052&ns=0
dbo:wikiPageLength
916