"1100594673"^^ . . . . . . . . . . . . . . . . . . . "Physics applications of asymptotically safe gravity"@en . . . . . . . . . . . "The asymptotic safety approach to quantum gravity provides a nonperturbative notion of renormalization in order to find a consistent and predictive quantum field theory of the gravitational interaction and spacetime geometry. It is based upon a nontrivial fixed point of the corresponding renormalization group (RG) flow such that the running coupling constants approach this fixed point in the ultraviolet (UV) limit. This suffices to avoid divergences in physical observables. Moreover, it has predictive power: Generically an arbitrary starting configuration of coupling constants given at some RG scale does not run into the fixed point for increasing scale, but a subset of configurations might have the desired UV properties. For this reason it is possible that \u2014 assuming a particular set of c"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "39711379"^^ . . . . . "9425"^^ . . . . . . . "The asymptotic safety approach to quantum gravity provides a nonperturbative notion of renormalization in order to find a consistent and predictive quantum field theory of the gravitational interaction and spacetime geometry. It is based upon a nontrivial fixed point of the corresponding renormalization group (RG) flow such that the running coupling constants approach this fixed point in the ultraviolet (UV) limit. This suffices to avoid divergences in physical observables. Moreover, it has predictive power: Generically an arbitrary starting configuration of coupling constants given at some RG scale does not run into the fixed point for increasing scale, but a subset of configurations might have the desired UV properties. For this reason it is possible that \u2014 assuming a particular set of couplings has been measured in an experiment \u2014 the requirement of asymptotic safety fixes all remaining couplings in such a way that the UV fixed point is approached. Asymptotic safety, if realized in Nature, has far reaching consequences in all areas where quantum effects of gravity are to be expected. Their exploration, however, is still in its infancy. By now there are some phenomenological studies concerning the implications of asymptotic safety in particle physics, astrophysics and cosmology, for instance."@en . . .