. "Hipotrochoida \u2013 krzywa zakre\u015Blona przez punkt le\u017C\u0105cy w sta\u0142ej odleg\u0142o\u015Bci od \u015Brodka ko\u0142a tocz\u0105cego si\u0119 po wewn\u0119trznej stronie nieruchomego okr\u0119gu."@pl . "A hipotrocoide \u00E9 uma rolete tra\u00E7ada por um ponto fixo de um c\u00EDrculo de raio r que rola dentro de um c\u00EDrculo de raio R fixo, onde o ponto est\u00E1 a uma dist\u00E2ncia d do centro ao c\u00EDrculo interno. As equa\u00E7\u00F5es param\u00E9tricas para a hipotrocoide s\u00E3o: A equa\u00E7\u00E3o polar para a hipotrocoide \u00E9: Casos especiais de hipotrocoides incluem a hipocicloide com d = r e a elipse com R = 2r. O brinquedo cl\u00E1ssico espir\u00F3grafo produz as curvas hipotrocoide e epitrocoide."@pt . "\u0645\u0646\u062D\u0646\u0649 \u0639\u062C\u0644\u064A \u062A\u062D\u062A\u064A"@ar . "Hipotrokoide"@eu . . . . . "Una hipotrocoide , a geometria, \u00E9s la corba plana que descriu un punt vinculat a una circumfer\u00E8ncia generatriu que roda dins d'una circumfer\u00E8ncia directriu, tangencialment, sense lliscament. La paraula es compon de les arrels gregues singlot hupo (baix) i trokos (roda). Aquestes corbes van ser estudiades per Albrecht D\u00FCrer en 1525, Ole Christensen R\u00F8mer el 1674 i Johann Bernoulli el 1725."@ca . "Hypotrochoida"@cs . "A hipotrocoide \u00E9 uma rolete tra\u00E7ada por um ponto fixo de um c\u00EDrculo de raio r que rola dentro de um c\u00EDrculo de raio R fixo, onde o ponto est\u00E1 a uma dist\u00E2ncia d do centro ao c\u00EDrculo interno. As equa\u00E7\u00F5es param\u00E9tricas para a hipotrocoide s\u00E3o: A equa\u00E7\u00E3o polar para a hipotrocoide \u00E9: Casos especiais de hipotrocoides incluem a hipocicloide com d = r e a elipse com R = 2r. O brinquedo cl\u00E1ssico espir\u00F3grafo produz as curvas hipotrocoide e epitrocoide."@pt . . . . . "\u0413\u0438\u043F\u043E\u0442\u0440\u043E\u0445\u043E\u0438\u0434\u0430"@ru . "Hipotrocoide"@es . "In geometria, un'ipotrocoide \u00E8 una rulletta ottenibile come curva tracciata da un punto fissato ad un cerchio c di raggio r e posto ad una distanza d dal centro (del cerchio c): quando c ruota all'interno di un cerchio pi\u00F9 grande, di raggio R, traccia l'ipotrocoide. Un'ipotrocoide si pu\u00F2 individuare con il seguente sistema di equazioni parametriche: . L'equazione polare di un'ipotrocoide \u00E8 Tra i casi speciali di ipotrocoide vi sono l'ipocicloide, relativa a d = r, e l'ellisse, ottenuta quando R = 2r. Le ipotrocoidi, cos\u00EC come le epitrocoidi, possono essere tracciate materialmente da una apparecchiatura chiamata spirografo."@it . . . . . "A hypotrochoid is a roulette traced by a point attached to a circle of radius r rolling around the inside of a fixed circle of radius R, where the point is a distance d from the center of the interior circle. The parametric equations for a hypotrochoid are: where is the angle formed by the horizontal and the center of the rolling circle (these are not polar equations because is not the polar angle). When measured in radian, takes values from to where LCM is least common multiple. The classic Spirograph toy traces out hypotrochoid and epitrochoid curves."@en . . . "\u5185\u65CB\u8F6E\u7EBF\uFF08\u82F1\u8A9E\uFF1Ahypotrochoid\uFF09\u662F\u8FFD\u8E2A\u9644\u7740\u5728\u56F4\u7ED5\u534A\u5F84\u4E3A R \u7684\u56FA\u5B9A\u7684\u5706\u5185\u4FA7\u6EDA\u8F6C\u7684\u534A\u5F84\u4E3A r \u7684\u5706\u4E0A\u7684\u4E00\u4E2A\u70B9\u5F97\u5230\u7684\uFF0C\u8FD9\u4E2A\u70B9\u5230\u5185\u90E8\u6EDA\u52A8\u7684\u5706\u7684\u4E2D\u5FC3\u7684\u8DDD\u79BB\u662F d\u3002 \u5185\u65CB\u8F6E\u7EBF\u7684\u53C2\u6570\u65B9\u7A0B\u662F: \u7279\u6B8A\u60C5\u51B5\u5305\u62EC d = r \u7684\u5185\u6446\u7EBF\u548C R = 2r \u7684\u692D\u5706\u3002 \u7ECF\u5178\u7684\u73A9\u5177\u842C\u82B1\u5C3A\u8FFD\u8E2A\u51FA\u5185\u65CB\u8F6E\u7EBF\u548C\u5916\u65CB\u8F6E\u7EBF\u3002"@zh . . . "En g\u00E9om\u00E9trie, les hypotrocho\u00EFdes sont des courbes planes d\u00E9crites par un point li\u00E9 \u00E0 un cercle mobile (C) roulant sans glisser sur et int\u00E9rieurement \u00E0 un cercle de base (C0), le cercle roulant \u00E9tant plus petit que le fixe. Ces courbes ont \u00E9t\u00E9 \u00E9tudi\u00E9es par Albrecht D\u00FCrer en 1525, Ole Christensen R\u00F8mer en 1674 et Jean Bernoulli en 1725 : Le mot se compose des racines grecques hupo (au-dessous) et trokhos (la roue). Lorsque le cercle roule \u00E0 l'ext\u00E9rieur, on a affaire \u00E0 une \u00E9pitrocho\u00EFde."@fr . . . "Una hipotrocoide , a geometria, \u00E9s la corba plana que descriu un punt vinculat a una circumfer\u00E8ncia generatriu que roda dins d'una circumfer\u00E8ncia directriu, tangencialment, sense lliscament. La paraula es compon de les arrels gregues singlot hupo (baix) i trokos (roda). Aquestes corbes van ser estudiades per Albrecht D\u00FCrer en 1525, Ole Christensen R\u00F8mer el 1674 i Johann Bernoulli el 1725."@ca . "\u0413\u0456\u043F\u043E\u0442\u0440\u043E\u0445\u043E\u0457\u0434\u0430 \u2014 \u043F\u043B\u043E\u0441\u043A\u0430 \u043A\u0440\u0438\u0432\u0430, \u0443\u0442\u0432\u043E\u0440\u0435\u043D\u0430 \u0444\u0456\u043A\u0441\u043E\u0432\u0430\u043D\u043E\u044E \u0442\u043E\u0447\u043A\u043E\u044E, \u0449\u043E \u0437\u043D\u0430\u0445\u043E\u0434\u0438\u0442\u044C\u0441\u044F \u043D\u0430 \u0444\u0456\u043A\u0441\u043E\u0432\u0430\u043D\u0456\u0439 \u0440\u0430\u0434\u0456\u0430\u043B\u044C\u043D\u0456\u0439 \u043F\u0440\u044F\u043C\u0456\u0439 \u043A\u043E\u043B\u0430, \u0449\u043E \u043A\u043E\u0442\u0438\u0442\u044C\u0441\u044F \u043F\u043E \u0432\u043D\u0443\u0442\u0440\u0456\u0448\u043D\u0456\u0439 \u0441\u0442\u043E\u0440\u043E\u043D\u0456 \u0456\u043D\u0448\u043E\u0433\u043E \u043A\u043E\u043B\u0430."@uk . . "En g\u00E9om\u00E9trie, les hypotrocho\u00EFdes sont des courbes planes d\u00E9crites par un point li\u00E9 \u00E0 un cercle mobile (C) roulant sans glisser sur et int\u00E9rieurement \u00E0 un cercle de base (C0), le cercle roulant \u00E9tant plus petit que le fixe. Ces courbes ont \u00E9t\u00E9 \u00E9tudi\u00E9es par Albrecht D\u00FCrer en 1525, Ole Christensen R\u00F8mer en 1674 et Jean Bernoulli en 1725 : Le mot se compose des racines grecques hupo (au-dessous) et trokhos (la roue). Lorsque le cercle roule \u00E0 l'ext\u00E9rieur, on a affaire \u00E0 une \u00E9pitrocho\u00EFde."@fr . "Una hipotrocoide, en geometr\u00EDa, es la curva plana que describe un punto vinculado a una circunferencia generatriz que rueda dentro de una circunferencia directriz, tangencialmente, sin deslizamiento. La palabra se compone de las ra\u00EDces griegas hipo hupo (abajo) y trokos (rueda). Estas curvas fueron estudiadas por Albrecht D\u00FCrer en 1525, Ole Christensen R\u00F8mer en 1674 y Bernoulli en 1725."@es . . . "\u0627\u0644\u0645\u0646\u062D\u0646\u0649 \u0627\u0644\u0639\u062C\u0644\u064A \u0627\u0644\u062A\u062D\u062A\u064A \u0623\u0648 \u0627\u0644\u062A\u0631\u0648\u0643\u0648\u064A\u062F \u0627\u0644\u062A\u062D\u062A\u064A (\u0628\u0627\u0644\u0625\u0646\u062C\u0644\u064A\u0632\u064A\u0629: Hypotrochoid) \u0647\u0648 \u0645\u0646\u062D\u0646\u0649 \u060C \u062A\u0648\u0644\u062F\u0647 \u0646\u0642\u0637\u0629 \u0648\u0627\u0642\u0639\u0629 \u0639\u0644\u0649 \u0627\u0644\u0645\u0633\u062A\u0642\u064A\u0645 \u0627\u0644\u0645\u0627\u0631 \u0628\u0645\u0631\u0643\u0632 \u062F\u0627\u0626\u0631\u0629 \u0646\u0635\u0641 \u0642\u0637\u0631\u0647\u0627 r \u062A\u062A\u062F\u062D\u0631\u062C \u062F\u0648\u0646 \u0627\u0646\u0632\u0644\u0627\u0642 \u062F\u0627\u062E\u0644 \u062F\u0627\u0626\u0631\u0629 \u0623\u062E\u0631\u0649 \u062B\u0627\u0628\u062A\u0629 \u0646\u0635\u0641 \u0642\u0637\u0631\u0647\u0627 R\u060C \u0628\u062D\u064A\u062B \u062A\u0643\u0648\u0646 d \u0647\u064A \u0627\u0644\u0645\u0633\u0627\u0641\u0629 \u0628\u064A\u0646 \u0627\u0644\u0646\u0642\u0637\u0629 \u0648\u0645\u0631\u0643\u0632 \u0627\u0644\u062F\u0627\u0626\u0631\u0629 \u0627\u0644\u062F\u0627\u062E\u0644\u064A\u0629. \u0627\u0644\u0645\u0639\u0627\u062F\u0644\u062A\u0627\u0646 \u0627\u0644\u0628\u0627\u0631\u0627\u0645\u062A\u0631\u064A\u062A\u0627\u0646 \u0644\u0644\u0645\u0646\u062D\u0646\u0649 \u0627\u0644\u0639\u062C\u0644\u064A \u0627\u0644\u062A\u062D\u062A\u064A \u0647\u0645\u0627:\u0627\u0644\u0645\u0639\u0627\u062F\u0644\u0629 \u0627\u0644\u0642\u0637\u0628\u064A\u0629 \u0644\u0644\u0639\u062C\u0644\u064A \u0627\u0644\u062A\u062D\u062A\u064A \u0647\u064A: \u0647\u0646\u0627\u0643 \u062D\u0627\u0644\u062A\u0627\u0646 \u062E\u0627\u0635\u062A\u0627\u0646 \u0644\u0644\u0639\u062C\u0644\u064A \u0627\u0644\u062A\u062D\u062A\u064A \u0648\u0647\u0645\u0627: 1. \n* \u0639\u0646\u062F\u0645\u0627 d = r \u0646\u062D\u0635\u0644 \u0639\u0644\u0649 \u062F\u0648\u064A\u0631\u064A \u062A\u062D\u062A\u064A 2. \n* \u0639\u0646\u062F\u0645\u0627 R = 2r \u0646\u062D\u0635\u0644 \u0639\u0644\u0649 \u0642\u0637\u0639 \u0646\u0627\u0642\u0635"@ar . "Ipotrocoide"@it . "Hipotrocoide"@ca . . . "De hypotrocho\u00EFde is een wiskundige planaire kromme die ontstaat door een kleine cirkel met straal r te laten wentelen in een grote cirkel met straal R en waarbij d de afstand is van het middelpunt van de kleine cirkel tot ieder punt op de kromme. Deze afstand d kan zowel kleiner als groter zijn dan r. Indien d = r, dan spreekt men van een hypocyclo\u00EFde."@nl . . . . . . . . "In geometria, un'ipotrocoide \u00E8 una rulletta ottenibile come curva tracciata da un punto fissato ad un cerchio c di raggio r e posto ad una distanza d dal centro (del cerchio c): quando c ruota all'interno di un cerchio pi\u00F9 grande, di raggio R, traccia l'ipotrocoide. Un'ipotrocoide si pu\u00F2 individuare con il seguente sistema di equazioni parametriche: . L'equazione polare di un'ipotrocoide \u00E8 Tra i casi speciali di ipotrocoide vi sono l'ipocicloide, relativa a d = r, e l'ellisse, ottenuta quando R = 2r."@it . . "Hipotrocoide"@pt . "Una hipotrocoide, en geometr\u00EDa, es la curva plana que describe un punto vinculado a una circunferencia generatriz que rueda dentro de una circunferencia directriz, tangencialmente, sin deslizamiento. La palabra se compone de las ra\u00EDces griegas hipo hupo (abajo) y trokos (rueda). Estas curvas fueron estudiadas por Albrecht D\u00FCrer en 1525, Ole Christensen R\u00F8mer en 1674 y Bernoulli en 1725."@es . . . . . . . . . "Curves"@en . . "Geometrian, hipotrokoidea kurba bat da, zirkunferentzia bat (sortzailea) beste zirkunferentzia baten barruan (gidatzailea), ukituz eta irristatu gabe, biratzen denean, berari lotutako P puntu batek jarraitzen duen bideak ematen duena. Hipotrokoide hitza hipo hupo (behean) eta trokos (gurpila) grezierazko erroek osatuta. Kurba mota hauek Albrecht D\u00FCrerrek 1525ean, Ole Christensen R\u00F8merrek 1674an eta Bernoullik 1725ean ikasi zituzten. Hipotrokoidea : non eta zirkunferentzia sortzaileko zentroak sortutako angelua (ohartu hauek ez direla angelu polarra ez delako), zirkunferentzia gidatzaileko erradioa, zirkunferentzia sortzaileko erradioa eta P puntuaren zentroarekiko distantzia diren. angelua 0-tik 2\u03C0-ra joaten da. Elipsea hipotrokoidearen kasu berezia da, non den. Hipozikloidea beste kasu berezia da, non (zirkunferentzia sortzaileko puntu finkoa)"@eu . . . "\u0413\u0438\u043F\u043E\u0442\u0440\u043E\u0445\u043E\u0438\u0434\u0430 \u2014 \u043F\u043B\u043E\u0441\u043A\u0430\u044F \u043A\u0440\u0438\u0432\u0430\u044F, \u043E\u0431\u0440\u0430\u0437\u0443\u0435\u043C\u0430\u044F \u0444\u0438\u043A\u0441\u0438\u0440\u043E\u0432\u0430\u043D\u043D\u043E\u0439 \u0442\u043E\u0447\u043A\u043E\u0439, \u043D\u0430\u0445\u043E\u0434\u044F\u0449\u0435\u0439\u0441\u044F \u043D\u0430 \u0444\u0438\u043A\u0441\u0438\u0440\u043E\u0432\u0430\u043D\u043D\u043E\u0439 \u0440\u0430\u0434\u0438\u0430\u043B\u044C\u043D\u043E\u0439 \u043F\u0440\u044F\u043C\u043E\u0439 \u043E\u043A\u0440\u0443\u0436\u043D\u043E\u0441\u0442\u0438, \u043A\u0430\u0442\u044F\u0449\u0435\u0439\u0441\u044F \u043F\u043E \u0432\u043D\u0443\u0442\u0440\u0435\u043D\u043D\u0435\u0439 \u0441\u0442\u043E\u0440\u043E\u043D\u0435 \u0434\u0440\u0443\u0433\u043E\u0439 \u043E\u043A\u0440\u0443\u0436\u043D\u043E\u0441\u0442\u0438."@ru . "\u0413\u0438\u043F\u043E\u0442\u0440\u043E\u0445\u043E\u0438\u0434\u0430 \u2014 \u043F\u043B\u043E\u0441\u043A\u0430\u044F \u043A\u0440\u0438\u0432\u0430\u044F, \u043E\u0431\u0440\u0430\u0437\u0443\u0435\u043C\u0430\u044F \u0444\u0438\u043A\u0441\u0438\u0440\u043E\u0432\u0430\u043D\u043D\u043E\u0439 \u0442\u043E\u0447\u043A\u043E\u0439, \u043D\u0430\u0445\u043E\u0434\u044F\u0449\u0435\u0439\u0441\u044F \u043D\u0430 \u0444\u0438\u043A\u0441\u0438\u0440\u043E\u0432\u0430\u043D\u043D\u043E\u0439 \u0440\u0430\u0434\u0438\u0430\u043B\u044C\u043D\u043E\u0439 \u043F\u0440\u044F\u043C\u043E\u0439 \u043E\u043A\u0440\u0443\u0436\u043D\u043E\u0441\u0442\u0438, \u043A\u0430\u0442\u044F\u0449\u0435\u0439\u0441\u044F \u043F\u043E \u0432\u043D\u0443\u0442\u0440\u0435\u043D\u043D\u0435\u0439 \u0441\u0442\u043E\u0440\u043E\u043D\u0435 \u0434\u0440\u0443\u0433\u043E\u0439 \u043E\u043A\u0440\u0443\u0436\u043D\u043E\u0441\u0442\u0438."@ru . . . . . "1547158"^^ . "Hipotrochoida"@pl . "\u5185\u65CB\u8F6E\u7EBF"@zh . . "Hypotrochoid"@en . "A hypotrochoid is a roulette traced by a point attached to a circle of radius r rolling around the inside of a fixed circle of radius R, where the point is a distance d from the center of the interior circle. The parametric equations for a hypotrochoid are: where is the angle formed by the horizontal and the center of the rolling circle (these are not polar equations because is not the polar angle). When measured in radian, takes values from to where LCM is least common multiple. Special cases include the hypocycloid with d = r is a line or flat ellipse and the ellipse with R = 2r and d > r or d < r (d is not equal to r). (see Tusi couple). The classic Spirograph toy traces out hypotrochoid and epitrochoid curves."@en . "Hipotrochoida \u2013 krzywa zakre\u015Blona przez punkt le\u017C\u0105cy w sta\u0142ej odleg\u0142o\u015Bci od \u015Brodka ko\u0142a tocz\u0105cego si\u0119 po wewn\u0119trznej stronie nieruchomego okr\u0119gu."@pl . . "Hypotrochoid"@en . "Hypotrocho\u00EFde"@nl . "Hypotrochoid"@en . . . . . "Hypotrochoida je k\u0159ivka, kterou opisuje bod, spojen\u00FD s kru\u017Enic\u00ED, odvaluj\u00EDc\u00ED se po vnit\u0159ku jin\u00E9, v\u011Bt\u0161\u00ED kru\u017Enice."@cs . "\u5185\u65CB\u8F6E\u7EBF\uFF08\u82F1\u8A9E\uFF1Ahypotrochoid\uFF09\u662F\u8FFD\u8E2A\u9644\u7740\u5728\u56F4\u7ED5\u534A\u5F84\u4E3A R \u7684\u56FA\u5B9A\u7684\u5706\u5185\u4FA7\u6EDA\u8F6C\u7684\u534A\u5F84\u4E3A r \u7684\u5706\u4E0A\u7684\u4E00\u4E2A\u70B9\u5F97\u5230\u7684\uFF0C\u8FD9\u4E2A\u70B9\u5230\u5185\u90E8\u6EDA\u52A8\u7684\u5706\u7684\u4E2D\u5FC3\u7684\u8DDD\u79BB\u662F d\u3002 \u5185\u65CB\u8F6E\u7EBF\u7684\u53C2\u6570\u65B9\u7A0B\u662F: \u7279\u6B8A\u60C5\u51B5\u5305\u62EC d = r \u7684\u5185\u6446\u7EBF\u548C R = 2r \u7684\u692D\u5706\u3002 \u7ECF\u5178\u7684\u73A9\u5177\u842C\u82B1\u5C3A\u8FFD\u8E2A\u51FA\u5185\u65CB\u8F6E\u7EBF\u548C\u5916\u65CB\u8F6E\u7EBF\u3002"@zh . . . "Geometrian, hipotrokoidea kurba bat da, zirkunferentzia bat (sortzailea) beste zirkunferentzia baten barruan (gidatzailea), ukituz eta irristatu gabe, biratzen denean, berari lotutako P puntu batek jarraitzen duen bideak ematen duena. Hipotrokoide hitza hipo hupo (behean) eta trokos (gurpila) grezierazko erroek osatuta. Kurba mota hauek Albrecht D\u00FCrerrek 1525ean, Ole Christensen R\u00F8merrek 1674an eta Bernoullik 1725ean ikasi zituzten. Hipotrokoidea : angelua 0-tik 2\u03C0-ra joaten da. Elipsea hipotrokoidearen kasu berezia da, non den."@eu . . . "\u0413\u0456\u043F\u043E\u0442\u0440\u043E\u0445\u043E\u0457\u0434\u0430"@uk . "Hypotrocho\u00EFde"@fr . . . "Hypotrochoida je k\u0159ivka, kterou opisuje bod, spojen\u00FD s kru\u017Enic\u00ED, odvaluj\u00EDc\u00ED se po vnit\u0159ku jin\u00E9, v\u011Bt\u0161\u00ED kru\u017Enice."@cs . "De hypotrocho\u00EFde is een wiskundige planaire kromme die ontstaat door een kleine cirkel met straal r te laten wentelen in een grote cirkel met straal R en waarbij d de afstand is van het middelpunt van de kleine cirkel tot ieder punt op de kromme. Deze afstand d kan zowel kleiner als groter zijn dan r. Indien d = r, dan spreekt men van een hypocyclo\u00EFde."@nl . . "983434514"^^ . . . . "\u0413\u0456\u043F\u043E\u0442\u0440\u043E\u0445\u043E\u0457\u0434\u0430 \u2014 \u043F\u043B\u043E\u0441\u043A\u0430 \u043A\u0440\u0438\u0432\u0430, \u0443\u0442\u0432\u043E\u0440\u0435\u043D\u0430 \u0444\u0456\u043A\u0441\u043E\u0432\u0430\u043D\u043E\u044E \u0442\u043E\u0447\u043A\u043E\u044E, \u0449\u043E \u0437\u043D\u0430\u0445\u043E\u0434\u0438\u0442\u044C\u0441\u044F \u043D\u0430 \u0444\u0456\u043A\u0441\u043E\u0432\u0430\u043D\u0456\u0439 \u0440\u0430\u0434\u0456\u0430\u043B\u044C\u043D\u0456\u0439 \u043F\u0440\u044F\u043C\u0456\u0439 \u043A\u043E\u043B\u0430, \u0449\u043E \u043A\u043E\u0442\u0438\u0442\u044C\u0441\u044F \u043F\u043E \u0432\u043D\u0443\u0442\u0440\u0456\u0448\u043D\u0456\u0439 \u0441\u0442\u043E\u0440\u043E\u043D\u0456 \u0456\u043D\u0448\u043E\u0433\u043E \u043A\u043E\u043B\u0430."@uk . . "3444"^^ . "\u0627\u0644\u0645\u0646\u062D\u0646\u0649 \u0627\u0644\u0639\u062C\u0644\u064A \u0627\u0644\u062A\u062D\u062A\u064A \u0623\u0648 \u0627\u0644\u062A\u0631\u0648\u0643\u0648\u064A\u062F \u0627\u0644\u062A\u062D\u062A\u064A (\u0628\u0627\u0644\u0625\u0646\u062C\u0644\u064A\u0632\u064A\u0629: Hypotrochoid) \u0647\u0648 \u0645\u0646\u062D\u0646\u0649 \u060C \u062A\u0648\u0644\u062F\u0647 \u0646\u0642\u0637\u0629 \u0648\u0627\u0642\u0639\u0629 \u0639\u0644\u0649 \u0627\u0644\u0645\u0633\u062A\u0642\u064A\u0645 \u0627\u0644\u0645\u0627\u0631 \u0628\u0645\u0631\u0643\u0632 \u062F\u0627\u0626\u0631\u0629 \u0646\u0635\u0641 \u0642\u0637\u0631\u0647\u0627 r \u062A\u062A\u062F\u062D\u0631\u062C \u062F\u0648\u0646 \u0627\u0646\u0632\u0644\u0627\u0642 \u062F\u0627\u062E\u0644 \u062F\u0627\u0626\u0631\u0629 \u0623\u062E\u0631\u0649 \u062B\u0627\u0628\u062A\u0629 \u0646\u0635\u0641 \u0642\u0637\u0631\u0647\u0627 R\u060C \u0628\u062D\u064A\u062B \u062A\u0643\u0648\u0646 d \u0647\u064A \u0627\u0644\u0645\u0633\u0627\u0641\u0629 \u0628\u064A\u0646 \u0627\u0644\u0646\u0642\u0637\u0629 \u0648\u0645\u0631\u0643\u0632 \u0627\u0644\u062F\u0627\u0626\u0631\u0629 \u0627\u0644\u062F\u0627\u062E\u0644\u064A\u0629. \u0627\u0644\u0645\u0639\u0627\u062F\u0644\u062A\u0627\u0646 \u0627\u0644\u0628\u0627\u0631\u0627\u0645\u062A\u0631\u064A\u062A\u0627\u0646 \u0644\u0644\u0645\u0646\u062D\u0646\u0649 \u0627\u0644\u0639\u062C\u0644\u064A \u0627\u0644\u062A\u062D\u062A\u064A \u0647\u0645\u0627:\u0627\u0644\u0645\u0639\u0627\u062F\u0644\u0629 \u0627\u0644\u0642\u0637\u0628\u064A\u0629 \u0644\u0644\u0639\u062C\u0644\u064A \u0627\u0644\u062A\u062D\u062A\u064A \u0647\u064A: \u0647\u0646\u0627\u0643 \u062D\u0627\u0644\u062A\u0627\u0646 \u062E\u0627\u0635\u062A\u0627\u0646 \u0644\u0644\u0639\u062C\u0644\u064A \u0627\u0644\u062A\u062D\u062A\u064A \u0648\u0647\u0645\u0627: 1. \n* \u0639\u0646\u062F\u0645\u0627 d = r \u0646\u062D\u0635\u0644 \u0639\u0644\u0649 \u062F\u0648\u064A\u0631\u064A \u062A\u062D\u062A\u064A 2. \n* \u0639\u0646\u062F\u0645\u0627 R = 2r \u0646\u062D\u0635\u0644 \u0639\u0644\u0649 \u0642\u0637\u0639 \u0646\u0627\u0642\u0635"@ar .