"Hermitescher symmetrischer Raum"@de . . . . . . . . . . "In mathematics, a Hermitian symmetric space is a Hermitian manifold which at every point has an inversion symmetry preserving the Hermitian structure. First studied by \u00C9lie Cartan, they form a natural generalization of the notion of Riemannian symmetric space from real manifolds to complex manifolds."@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "In der Mathematik ist ein hermitescher symmetrischer Raum eine hermitesche Mannigfaltigkeit, die gleichzeitig ein symmetrischer Raum ist. Beispiele sind die riemannsche Zahlenkugel, die hyperbolische Ebene oder der siegelsche Halbraum. Hermitesche symmetrische R\u00E4ume werden in der algebraischen Geometrie als Parameterr\u00E4ume f\u00FCr die verwendet."@de . . . . . . . "In der Mathematik ist ein hermitescher symmetrischer Raum eine hermitesche Mannigfaltigkeit, die gleichzeitig ein symmetrischer Raum ist. Beispiele sind die riemannsche Zahlenkugel, die hyperbolische Ebene oder der siegelsche Halbraum. Hermitesche symmetrische R\u00E4ume werden in der algebraischen Geometrie als Parameterr\u00E4ume f\u00FCr die verwendet."@de . . . . . . . . . . . "Hermitian symmetric space"@en . . . . . . . . . . . . "4127357"^^ . . . . . . . . . . . . . "1113209873"^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "In mathematics, a Hermitian symmetric space is a Hermitian manifold which at every point has an inversion symmetry preserving the Hermitian structure. First studied by \u00C9lie Cartan, they form a natural generalization of the notion of Riemannian symmetric space from real manifolds to complex manifolds. Every Hermitian symmetric space is a homogeneous space for its isometry group and has a unique decomposition as a product of irreducible spaces and a Euclidean space. The irreducible spaces arise in pairs as a non-compact space that, as Borel showed, can be embedded as an open subspace of its compact dual space. Harish Chandra showed that each non-compact space can be realized as a bounded symmetric domain in a complex vector space. The simplest case involves the groups SU(2), SU(1,1) and their common complexification SL(2,C). In this case the non-compact space is the unit disk, a homogeneous space for SU(1,1). It is a bounded domain in the complex plane C. The one-point compactification of C, the Riemann sphere, is the dual space, a homogeneous space for SU(2) and SL(2,C). Irreducible compact Hermitian symmetric spaces are exactly the homogeneous spaces of simple compact Lie groups by maximal closed connected subgroups which contain a maximal torus and have center isomorphic to the circle group. There is a complete classification of irreducible spaces, with four classical series, studied by Cartan, and two exceptional cases; the classification can be deduced from Borel\u2013de Siebenthal theory, which classifies closed connected subgroups containing a maximal torus. Hermitian symmetric spaces appear in the theory of Jordan triple systems, several complex variables, complex geometry, automorphic forms and group representations, in particular permitting the construction of the holomorphic discrete series representations of semisimple Lie groups."@en . . . . . "52652"^^ . . . . . . .