This HTML5 document contains 126 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbpedia-dehttp://de.dbpedia.org/resource/
n19http://www.iumj.indiana.edu/IUMJ/FULLTEXT/1964/13/13028%7Cdoi=10.1512/
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n14https://global.dbpedia.org/id/
n8http://molle.fernuni-hagen.de/~loos/jordan/archive/irvine/irvine.pdf%7Caccess-date=2013-03-18%7Carchive-url=https:/web.archive.org/web/20160303234008/http:/molle.fernuni-hagen.de/~loos/jordan/archive/irvine/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
n13http://www.numdam.org/numdam-bin/fitem%3Fid=SB_1951-1954__2__121_0%7Cyear=1952%7Curl-status=dead%7Carchiveurl=https:/web.archive.org/web/20160304003445/http:/www.numdam.org/numdam-bin/
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
n16https://archive.org/details/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Hermitian_symmetric_space
rdf:type
yago:Attribute100024264 yago:Group100031264 yago:Abstraction100002137 yago:WikicatLieGroups yago:WikicatHomogeneousSpaces yago:Space100028651 owl:Thing
rdfs:label
Hermitescher symmetrischer Raum Hermitian symmetric space
rdfs:comment
In mathematics, a Hermitian symmetric space is a Hermitian manifold which at every point has an inversion symmetry preserving the Hermitian structure. First studied by Élie Cartan, they form a natural generalization of the notion of Riemannian symmetric space from real manifolds to complex manifolds. In der Mathematik ist ein hermitescher symmetrischer Raum eine hermitesche Mannigfaltigkeit, die gleichzeitig ein symmetrischer Raum ist. Beispiele sind die riemannsche Zahlenkugel, die hyperbolische Ebene oder der siegelsche Halbraum. Hermitesche symmetrische Räume werden in der algebraischen Geometrie als Parameterräume für die verwendet.
rdfs:seeAlso
dbr:Mutation_(Jordan_algebra)
dcterms:subject
dbc:Lie_groups dbc:Riemannian_geometry dbc:Complex_manifolds dbc:Differential_geometry dbc:Homogeneous_spaces
dbo:wikiPageID
4127357
dbo:wikiPageRevisionID
1113209873
dbo:wikiPageWikiLink
dbr:Bounded_symmetric_domain dbr:Borel–de_Siebenthal_theory dbr:Killing_form dbr:Cayley_transform dbr:Shilov_boundary dbr:Harish-Chandra dbc:Homogeneous_spaces dbr:Fubini–Study_metric dbr:Automorphic_form dbr:Levi_factor dbr:Composition_algebra dbr:Real_manifold dbr:Siegel_domain dbr:Biholomorphism dbr:Nilradical_of_a_Lie_algebra dbr:Several_complex_variables dbr:Graded_Lie_algebra dbr:Complex_vector_space dbr:Mathematics dbr:Parabolic_subgroup dbr:Compact_space dbr:Complex_projective_space dbr:Hermitian_manifold dbr:Jordan_pair dbc:Lie_groups dbc:Riemannian_geometry dbr:Symmetric_space dbr:Jordan_triple_system dbr:Skew-symmetric_matrix dbr:Slice_theorem_(differential_geometry) dbc:Complex_manifolds dbr:Totally_geodesic dbr:Bergman_kernel dbr:Rosenfeld_projective_plane dbr:Mutation_(Jordan_algebra) dbr:Holomorphic_discrete_series_representation dbr:Robert_Hermann_(mathematician) dbr:Borel-de_Siebenthal_theory dbr:Euclidean_Hurwitz_algebra dbr:Harish_Chandra dbr:Convex_set dbr:Bergman_metric dbr:Generalized_flag_manifold dbr:Euler–Poincaré_characteristic dbr:Élie_Cartan dbr:Transformation_group dbr:Orthogonal_symmetric_Lie_algebra dbr:Identity_component dbr:Semisimple_Lie_group dbr:Lexicographic_order dbr:Lie_group dbr:Complexification_(Lie_group) dbr:Algebraic_groups dbr:Complex_manifold dbr:Polar_decomposition dbr:Lie_algebra dbr:Armand_Borel dbr:Jordan_frame_(Jordan_algebra) dbr:Complex_geometry dbr:Restricted_root_system dbr:Cauchy_integral_formula dbr:Riemann_sphere dbr:Structure_group_(Jordan_algebra) dbr:Almost_complex_structure dbr:Hermitian_metric dbr:Adjoint_representation dbr:Möbius_transformation dbr:Grassmannian dbr:Kähler_manifold dbr:Unit_disk dbr:Operator_norm dbr:Projective_variety dbc:Differential_geometry dbr:Baily–Borel_compactification dbr:Group_representation dbr:Riemannian_metric dbr:Cayley_algebra dbr:Carl_Ludwig_Siegel dbr:Invariant_convex_cone dbr:Riemannian_symmetric_space dbr:Cayley_projective_plane dbr:Unit_ball dbr:Complete_metric_space
dbo:wikiPageExternalLink
n8:irvine.pdf%7Carchive-date=2016-03-03%7Curl-status=dead n13:fitem%3Fid=SB_1951-1954__2__121_0%7Carchivedate=2016-03-04 n16:lecturenotesinma19691rice n19:iumj.1964.13.13028%7Cdoi-access=free
owl:sameAs
dbpedia-de:Hermitescher_symmetrischer_Raum wikidata:Q5741926 n14:4mPUL freebase:m.03bxcrx yago-res:Hermitian_symmetric_space
dbp:wikiPageUsesTemplate
dbt:Short_description dbt:Harvtxt dbt:Reflist dbt:Lie_groups dbt:Main dbt:Use_American_English dbt:Citation dbt:Math dbt:See_also
dbo:abstract
In der Mathematik ist ein hermitescher symmetrischer Raum eine hermitesche Mannigfaltigkeit, die gleichzeitig ein symmetrischer Raum ist. Beispiele sind die riemannsche Zahlenkugel, die hyperbolische Ebene oder der siegelsche Halbraum. Hermitesche symmetrische Räume werden in der algebraischen Geometrie als Parameterräume für die verwendet. In mathematics, a Hermitian symmetric space is a Hermitian manifold which at every point has an inversion symmetry preserving the Hermitian structure. First studied by Élie Cartan, they form a natural generalization of the notion of Riemannian symmetric space from real manifolds to complex manifolds. Every Hermitian symmetric space is a homogeneous space for its isometry group and has a unique decomposition as a product of irreducible spaces and a Euclidean space. The irreducible spaces arise in pairs as a non-compact space that, as Borel showed, can be embedded as an open subspace of its compact dual space. Harish Chandra showed that each non-compact space can be realized as a bounded symmetric domain in a complex vector space. The simplest case involves the groups SU(2), SU(1,1) and their common complexification SL(2,C). In this case the non-compact space is the unit disk, a homogeneous space for SU(1,1). It is a bounded domain in the complex plane C. The one-point compactification of C, the Riemann sphere, is the dual space, a homogeneous space for SU(2) and SL(2,C). Irreducible compact Hermitian symmetric spaces are exactly the homogeneous spaces of simple compact Lie groups by maximal closed connected subgroups which contain a maximal torus and have center isomorphic to the circle group. There is a complete classification of irreducible spaces, with four classical series, studied by Cartan, and two exceptional cases; the classification can be deduced from Borel–de Siebenthal theory, which classifies closed connected subgroups containing a maximal torus. Hermitian symmetric spaces appear in the theory of Jordan triple systems, several complex variables, complex geometry, automorphic forms and group representations, in particular permitting the construction of the holomorphic discrete series representations of semisimple Lie groups.
gold:hypernym
dbr:Manifold
prov:wasDerivedFrom
wikipedia-en:Hermitian_symmetric_space?oldid=1113209873&ns=0
dbo:wikiPageLength
52652
foaf:isPrimaryTopicOf
wikipedia-en:Hermitian_symmetric_space