This HTML5 document contains 278 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbpedia-elhttp://el.dbpedia.org/resource/
dbthttp://dbpedia.org/resource/Template:
dbpedia-nohttp://no.dbpedia.org/resource/
dbpedia-svhttp://sv.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbpedia-lmohttp://lmo.dbpedia.org/resource/
dbpedia-bghttp://bg.dbpedia.org/resource/
dbpedia-fihttp://fi.dbpedia.org/resource/
n51http://hy.dbpedia.org/resource/
dbrhttp://dbpedia.org/resource/
dbpedia-arhttp://ar.dbpedia.org/resource/
dbpedia-hehttp://he.dbpedia.org/resource/
dbpedia-frhttp://fr.dbpedia.org/resource/
dctermshttp://purl.org/dc/terms/
rdfshttp://www.w3.org/2000/01/rdf-schema#
dbpedia-cshttp://cs.dbpedia.org/resource/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
dbphttp://dbpedia.org/property/
n47http://ur.dbpedia.org/resource/
xsdhhttp://www.w3.org/2001/XMLSchema#
dbpedia-ukhttp://uk.dbpedia.org/resource/
dbpedia-idhttp://id.dbpedia.org/resource/
dbpedia-srhttp://sr.dbpedia.org/resource/
dbohttp://dbpedia.org/ontology/
dbpedia-vihttp://vi.dbpedia.org/resource/
dbpedia-pthttp://pt.dbpedia.org/resource/
n13http://mathworld.wolfram.com/
dbpedia-jahttp://ja.dbpedia.org/resource/
dbchttp://dbpedia.org/resource/Category:
dbpedia-dehttp://de.dbpedia.org/resource/
dbpedia-plhttp://pl.dbpedia.org/resource/
dbpedia-ruhttp://ru.dbpedia.org/resource/
yagohttp://dbpedia.org/class/yago/
dbpedia-rohttp://ro.dbpedia.org/resource/
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
n50https://global.dbpedia.org/id/
yago-reshttp://yago-knowledge.org/resource/
dbpedia-ithttp://it.dbpedia.org/resource/
n23http://nl.dbpedia.org/resource/Eindig_lichaam_(Ned)_/
dbpedia-cahttp://ca.dbpedia.org/resource/
provhttp://www.w3.org/ns/prov#
foafhttp://xmlns.com/foaf/0.1/
dbpedia-simplehttp://simple.dbpedia.org/resource/
dbpedia-zhhttp://zh.dbpedia.org/resource/
dbpedia-kohttp://ko.dbpedia.org/resource/
dbpedia-behttp://be.dbpedia.org/resource/
dbpedia-trhttp://tr.dbpedia.org/resource/
dbpedia-fahttp://fa.dbpedia.org/resource/
n18https://archive.org/details/
freebasehttp://rdf.freebase.com/ns/
dbpedia-eshttp://es.dbpedia.org/resource/
owlhttp://www.w3.org/2002/07/owl#

Statements

Subject Item
dbr:Finite_field
rdf:type
yago:YagoPermanentlyLocatedEntity yago:YagoLegalActorGeo yago:Object100002684 yago:Region108630985 yago:Location100027167 yago:GeographicalArea108574314 yago:Tract108673395 yago:Field108569998 yago:WikicatFiniteFields yago:PhysicalEntity100001930 owl:Thing yago:YagoGeoEntity
rdfs:label
Cuerpo finito Ciało skończone Πεπερασμένο σώμα Konečné těleso Corps fini Campo finito Eindig lichaam (Ned) / Eindig veld (Be) حقل محدود (رياضيات) Конечное поле Medan hingga 유한체 Endlicher Körper Corpo finito 有限体 Cos finit Поле Галуа Finite field 有限域 Ändlig kropp
rdfs:comment
En matemàtiques i més precisament en la branca de la teoria de Galois, un cos finit, anomenat també cos de Galois és un cos el cardinal del qual és finit (té un nombre finit d'elements). Tret d'isomorfismes, tot cos finit queda completament determinat pel seu cardinal que és sempre de la forma pn, una potència d'un nombre primer. Aquest nombre primer no és altre que la seva característica (el nombre més petit de vegades que s'ha de sumar l'element neutre de la multiplicació per a obtenir l'element neutre de la suma) i el cos es presenta com l'única extensió finita del cos primitiu Z/p de dimensió n. 체론에서 유한체(有限體, 영어: finite field) 또는 갈루아 체(영어: Galois field)는 유한개의 원소를 가지는 체이다. Скінченне поле або поле Галуа (на честь Евариста Галуа) — поле, яке складається зі скінченної множини елементів. Найменше поле Галуа містить лише два елементи: та , арифметичні операції над якими поводяться майже як звичайно, за винятком правила . Це поле широко застосується в дискретній математиці, комп'ютерних науках і теорії кодування. Ідея застосування поля полягає в тому, що доцільно розглядати послідовності з нулів й одиниць як елементи деякої алгебраїчної структури: векторного простору над цим полем, розширення , кільця многочленів , тощо. Konečné těleso (též Galoisovo těleso na počest Évarista Galoise, obvykle značeno ) je v matematice, přesněji v abstraktní algebře, označení pro takové těleso, které má konečný počet prvků. Dalam matematika, medan berhingga (disebut juga medan Galois dari matematikawan Evariste Galois) adalah medan yang berisi elemen berjumlah berhingga. Seperti medan lainnya, medan berhingga adalah himpunan yang memiliki operasi pertambahan, pengurangan, perkalian, dan pembagian yang didefinisikan dan memenuhi aturan tertentu. Contoh umum medan berhingga adalah bilangan bulat mod p dengan p adalah bilangan prima. Medan berhingga adalah dasar dalam beberapa bidang matematika dan ilmu komputer, termasuk teori bilangan, geometri aljabar, teori Galois, , kriptografi, dan teori kode. في الجبر التجريدي، الحقل المحدود (بالإنجليزية: Finite fields)‏ أو حقل غالوا نسبة للعالم الفرنسي إيفاريست جالوا هو حقل يحتوي على عدد محدود من العناصر. الحقول المنتهية مهمة جدا في نظرية الأعداد والهندسة الجبرية ونظرية غالوا والتشفير ونظرية الترميز غيرها. تُصنف الحقول المنتهية حسب عدد عناصرها. تظهر الحقول المنتهية في سلسلة كما يلي: الحلقات التبادلية ⊃ integral domains ⊃ integrally closed domains ⊃ unique factorization domains ⊃ principal ideal domains ⊃ Euclidean domains ⊃ الحقول ⊃ الحقول المنتهية. En mathématiques et plus précisément en algèbre, un corps fini est un corps commutatif qui est par ailleurs fini. À isomorphisme près, un corps fini est entièrement déterminé par son cardinal, qui est toujours une puissance d'un nombre premier, ce nombre premier étant sa caractéristique. Pour tout nombre premier p et tout entier non nul n, il existe un corps de cardinal pn, qui se présente comme l'unique extension de degré n du corps premier Z/pZ. In matematica, in particolare in algebra, un campo finito (detto a volte anche campo di Galois) è un campo che contiene un numero finito di elementi. I campi finiti sono importanti in teoria dei numeri, geometria algebrica, teoria di Galois, in crittografia e in teoria dei codici. I campi finiti sono completamente classificati. Em matemática e, em especial, na teoria dos corpos, um corpo finito é um corpo em que o conjunto dos elementos é finito. Corpos finitos também são chamados corpos de Galois em honra ao matemático francês Évariste Galois. In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod p when p is a prime number. 有限体(ゆうげんたい、英語:finite field)とは、代数学において、有限個の元からなる体、すなわち四則演算が定義され閉じている有限集合のことである。主に計算機関連の分野においては、発見者であるエヴァリスト・ガロアにちなんでガロア体あるいはガロア域(ガロアいき、Galois field)などとも呼ぶ。 有限体においては、体の定義における乗法の可換性についての条件の有無は問題にはならない。実際、ウェダーバーンの小定理と呼ばれる以下の定理 「有限斜体は可換体である」 が成り立つことが知られている。別な言い方をすれば、有限体において乗法の可換性は、体の有限性から導かれるということである。 Στα μαθηματικά, ένα σώμα καλείται πεπερασμένο αν το πλήθος των στοιχείων του είναι πεπερασμένο. Ένα πεπερασμένο σώμα λέγεται αλλιώς και σώμα Γκαλουά προς τιμήν του Γάλλου μαθηματικού Γκαλουά (Évariste Galois). Τα πεπερασμένα σώματα είναι σημαντικά στην , την , την Κρυπτογραφία και τη . I abstrakt algebra är en ändlig kropp en kropp med ändligt många element. Teorin om ändliga kroppar utarbetades av Carl Friedrich Gauss (1777-1855) och Évariste Galois (1811-1832), därav benämns ändliga kroppar ibland för Galoiskroppar. Ändliga kroppar har applikationer i kombinatorik, kryptologi, talteori och kodningsteori (där de bland annat används för att konstruera felrättande koder, till exempel .) Коне́чное по́ле, или по́ле Галуа́ в общей алгебре — поле, состоящее из конечного числа элементов; это число называется поря́дком поля. Конечное поле обычно обозначается или (сокращение от англ. Galois field) и называется полем Галуа порядка , где — число элементов поля.С точностью до изоморфизма конечное поле полностью определяется его порядком, который всегда является степенью какого-нибудь простого числа, то есть , где — простое число, а — любое натуральное число. При этом будет являться характеристикой этого поля. In der Algebra, einem Teilgebiet der Mathematik, ist ein endlicher Körper oder Galoiskörper (nach Évariste Galois) ein Körper mit einer endlichen Anzahl von Elementen, d. h. eine endliche Menge, auf der zwei als Addition und Multiplikation verstandene Grundoperationen definiert sind, sodass die Menge zusammen mit diesen Operationen alle Anforderungen eines Körpers erfüllt. E. H. Moore prägte wohl 1893 den englischen Begriff Galois field zu Ehren von Évariste Galois, der bereits mit gewissen imaginären Zahlen modulo gerechnet hat. Ciało skończone lub ciało Galois – ciało skończonego rzędu, tj. o skończonej liczbie elementów; druga z nazw pochodzi od nazwiska Évariste’a Galois, który znacząco przyczynił się do rozwoju badań nad ciałami skończonymi (zob. ). Galois wskazał ich zastosowanie w tzw. teorii Galois dającej m.in. definitywną odpowiedź na pytania o rozstrzygnięcie możliwości wykonania klasycznych konstrukcji w geometrii euklidesowej czy też zgrabnie uzasadniającej brak ogólnych wzorów na pierwiastki wielomianów wyższych stopni. 在数学中,有限域(英語:finite field)或伽罗瓦域(英語:Galois field,为纪念埃瓦里斯特·伽罗瓦命名)是包含有限个元素的域。与其他域一样,有限域是进行加减乘除运算都有定义并且满足特定规则的集合。有限域最常见的例子是当 p 为素数时,整数对 p 取模。 有限域的元素个数称为它的阶。 有限域在许多数学和计算机科学领域的基础,包括数论、代数几何、伽羅瓦理論、有限幾何學、密码学和编码理论。 Een eindig lichaam (Nederlandse term) of eindig veld (Belgische term), galoislichaam, galoisruimte, of galoisveld (vernoemd naar Évariste Galois) is een lichaam /veld met een eindig aantal elementen. Dit aantal, de orde van het lichaam genoemd, kan alleen maar een macht van een priemgetal zijn. Omgekeerd is er voor ieder dergelijk aantal een eindig lichaam (op isomorfie na eenduidig). En álgebra abstracta, un cuerpo finito, campo finito o campo de Galois (llamado así por Évariste Galois)​ es un cuerpo definido sobre un conjunto finito de elementos. Los cuerpos finitos son importantes en teoría de números, geometría algebraica, teoría de Galois, y criptografía. Todos los cuerpos finitos tienen un número de elementos q = pn, para algún número primo p y algún entero positivo n. Para cada cardinalidad q así definida hay una y solo una manera posible de definir un cuerpo finito, por lo que todos los cuerpos finitos del mismo orden son isomorfos entre sí.​
dcterms:subject
dbc:Finite_fields
dbo:wikiPageID
11615
dbo:wikiPageRevisionID
1124510326
dbo:wikiPageWikiLink
dbr:Algebraic_geometry dbr:Krull_topology dbr:PDF417 dbr:Distinct_degree_factorization dbr:LLL_algorithm dbr:Absolute_Galois_group dbr:Zech's_logarithm dbr:Field_extension dbr:Minimal_polynomial_(field_theory) dbr:Separable_extension dbr:Klein_four-group dbr:Binomial_theorem dbr:Claude_Chevalley dbr:Finite_geometry dbr:Wedderburn's_little_theorem dbr:Möbius_function dbr:Chevalley–Warning_theorem dbr:Finite_group dbr:Lagrange's_theorem_(group_theory) dbr:Homogeneous_polynomial dbr:Diffie–Hellman dbr:Finite_field_arithmetic dbr:Binomial_coefficient dbr:Paley_construction dbr:Artin–Zorn_theorem dbr:Paley_graph dbr:Algebraic_closure dbc:Finite_fields dbr:BCH_code dbr:Algebraic_variety dbr:Field_with_one_element dbr:Frobenius_automorphism dbr:Root_of_a_polynomial dbr:Computer_algebra_system dbr:Cryptographic_protocol dbr:Wiles'_proof_of_Fermat's_Last_Theorem dbr:Arithmetic_combinatorics dbr:Elliptic_curves dbr:Alternative_division_ring dbr:Perfect_field dbr:Cryptography dbr:Alternativity dbr:Abelian_group dbr:Identity_(mathematics) dbr:Reciprocal_polynomial dbr:Character_sum dbr:Linear_algebra dbr:Hasse_principle dbr:Splitting_field dbr:Prime_field dbr:Field_(mathematics) dbr:Carry-less_product dbr:Quasi-finite_field dbr:Quasi-algebraically_closed_field dbr:Division_by_0 dbr:Galois_group dbr:Root_of_unity dbr:Galois_extension dbr:Exponential_sum dbr:Reed–Solomon_error_correction dbr:Unique_factorization_domain dbr:Fermat's_little_theorem dbr:Profinite_group dbr:Coding_theory dbr:Discrete_logarithm_problem dbr:Cyclic_group dbr:Integer dbr:Galois_theory dbr:Elementary_abelian_group dbr:Isomorphism dbr:Vector_space dbr:Euclidean_division dbr:Characteristic_(algebra) dbr:Exponentiation_by_squaring dbr:Combinatorics dbr:Prime_number dbr:Euclidean_division_of_polynomials dbr:Multiplicative_group dbr:Linear_map dbr:Freshman's_dream dbr:Monic_polynomial dbr:Bulletin_of_the_American_Mathematical_Society dbr:Primitive_element_(finite_field) dbr:Polynomial_ring dbr:Formal_derivative dbr:Polynomial_factorization dbr:Polynomial dbr:E._H._Moore dbr:Integers_mod_n dbr:Division_ring dbr:Linear_subspace dbr:Field_axioms dbr:Finite_ring dbr:Associativity dbr:Element_(mathematics) dbr:Conway_polynomial_(finite_fields) dbr:Discrete_logarithm dbr:Cambridge_University_Press dbr:Extended_Euclidean_algorithm dbr:Coprime dbr:Topological_group dbr:Trinomial dbr:Number_theory dbr:Irreducible_polynomial dbr:Field_automorphism dbr:Distributive_law dbr:Multiplicative_inverse dbr:Rational_numbers dbr:Prime_power dbr:Hamming_space dbr:Rational_number dbr:ECDHE dbr:Leonard_Eugene_Dickson dbr:Quadratic_non-residue dbr:Szemerédi's_theorem dbr:Évariste_Galois dbr:Discriminant dbr:Ring_(mathematics) dbr:Quotient_ring dbr:Cyclotomic_polynomial dbr:Set_(mathematics) dbr:Computer_science dbr:Mathematics dbr:Modular_arithmetic dbr:Emil_Artin dbr:Euler's_totient_function dbr:Chinese_remainder_theorem dbr:Weil_conjectures dbr:Isomorphic dbr:Hensel_lifting dbr:Error_correction_code dbr:Expression_(mathematics) dbr:Function_composition dbr:Ferdinand_Georg_Frobenius
dbo:wikiPageExternalLink
n13:FiniteField.html n18:finitefields0000lidl_a8r3
owl:sameAs
dbpedia-pl:Ciało_skończone dbpedia-de:Endlicher_Körper dbpedia-bg:Крайно_поле yago-res:Finite_field dbpedia-sv:Ändlig_kropp dbpedia-be:Канечнае_поле dbpedia-he:שדה_סופי dbpedia-cs:Konečné_těleso wikidata:Q603880 n23:_Eindig_veld_(Be) dbpedia-id:Medan_hingga dbpedia-ca:Cos_finit dbpedia-ro:Corp_finit dbpedia-ru:Конечное_поле dbpedia-lmo:Camp_finii dbpedia-no:Endelig_kropp dbpedia-ko:유한체 dbpedia-es:Cuerpo_finito dbpedia-uk:Поле_Галуа dbpedia-it:Campo_finito dbpedia-fr:Corps_fini dbpedia-fi:Äärellinen_kunta dbpedia-sr:Коначно_поље dbpedia-simple:Galois_field dbpedia-zh:有限域 dbpedia-tr:Sonlu_alan freebase:m.032gk dbpedia-fa:میدان_متناهی dbpedia-vi:Trường_hữu_hạn dbpedia-el:Πεπερασμένο_σώμα n47:متناہی_میدان dbpedia-pt:Corpo_finito dbpedia-ja:有限体 n50:4nLD8 n51:Վերջավոր_դաշտ dbpedia-ar:حقل_محدود_(رياضيات)
dbp:wikiPageUsesTemplate
dbt:Main dbt:Sup dbt:Short_description dbt:SpringerEOM dbt:Citation dbt:Algebraic_structures dbt:Doi dbt:Diagonal_split_header dbt:Math dbt:Val dbt:Mvar dbt:Tmath dbt:Block_indent dbt:Redirect dbt:Authority_control dbt:Refbegin dbt:Refend dbt:Reflist dbt:′ dbt:More_footnotes dbt:Slink dbt:Sfrac
dbp:em
1.5
dbp:id
Galois_field&oldid=34238
dbp:text
, The multiplicative group of the non-zero elements in is cyclic, and there exists an element , such that the non-zero elements of are . .
dbp:title
Galois field
dbo:abstract
Скінченне поле або поле Галуа (на честь Евариста Галуа) — поле, яке складається зі скінченної множини елементів. Найменше поле Галуа містить лише два елементи: та , арифметичні операції над якими поводяться майже як звичайно, за винятком правила . Це поле широко застосується в дискретній математиці, комп'ютерних науках і теорії кодування. Ідея застосування поля полягає в тому, що доцільно розглядати послідовності з нулів й одиниць як елементи деякої алгебраїчної структури: векторного простору над цим полем, розширення , кільця многочленів , тощо. Алгебраїчні операції в цій структурі приводять до низки важливих конструкцій в означених галузях, наприклад, , і . Засновані на теорії скінчених полів алгоритми перевірки на простоту і факторизації цілих чисел відіграють важливу роль у сучасній . Для будь-якого простого числа , кільце залишків — це скінчене поле з елементів, яке позначається . Елементи цього поля можуть бути представлені цілими числами , які додаються і множаться «за модулем ». Будь-яке скінчене поле містить елементів і однозначно задається своєю характеристикою і степенем . 在数学中,有限域(英語:finite field)或伽罗瓦域(英語:Galois field,为纪念埃瓦里斯特·伽罗瓦命名)是包含有限个元素的域。与其他域一样,有限域是进行加减乘除运算都有定义并且满足特定规则的集合。有限域最常见的例子是当 p 为素数时,整数对 p 取模。 有限域的元素个数称为它的阶。 有限域在许多数学和计算机科学领域的基础,包括数论、代数几何、伽羅瓦理論、有限幾何學、密码学和编码理论。 In der Algebra, einem Teilgebiet der Mathematik, ist ein endlicher Körper oder Galoiskörper (nach Évariste Galois) ein Körper mit einer endlichen Anzahl von Elementen, d. h. eine endliche Menge, auf der zwei als Addition und Multiplikation verstandene Grundoperationen definiert sind, sodass die Menge zusammen mit diesen Operationen alle Anforderungen eines Körpers erfüllt. Endliche Körper spielen eine wichtige Rolle in der Kryptographie und der Codierungstheorie (Vorwärtsfehlerkorrektur, zum Beispiel beim Reed-Solomon-Code). Daneben sind sie grundlegend für das Studium der Primideale im Ring der ganzen Zahlen einer endlichen Körpererweiterung von im Rahmen der algebraischen Zahlentheorie. Man vergleiche hierzu auch Verzweigung im Kontext von Erweiterungen von Dedekindringen. Außerdem sind endliche Körper in der Geometrie als Koordinatenbereiche endlicher Geometrien von Bedeutung. Sie sind allgemeiner Koordinatenbereiche von Ebenen und Räumen in der synthetischen Geometrie. Mit Hilfe der Addition und Multiplikation in einem endlichen Körper werden hier Verknüpfungen mit schwächeren algebraischen Eigenschaften definiert, die aus dem Körper z. B. einen Ternär- oder Quasikörper machen. Auf diesen verallgemeinerten Körpern können dann projektive und affine Ebenen konstruiert werden. Die Anzahl der Elemente eines endlichen Körpers ist immer eine Primzahlpotenz. Für jede Primzahl und jede positive natürliche Zahl existiert (bis auf Isomorphie) genau ein Körper mit Elementen, der mit oder bezeichnet wird. ist der Körper der Restklassen ganzer Zahlen modulo . E. H. Moore prägte wohl 1893 den englischen Begriff Galois field zu Ehren von Évariste Galois, der bereits mit gewissen imaginären Zahlen modulo gerechnet hat. Der Satz von Wedderburn sagt aus, dass die Multiplikation in einem endlichen Schiefkörper notwendig kommutativ ist. Das heißt, dass endliche Schiefkörper stets endliche Körper sind. Ciało skończone lub ciało Galois – ciało skończonego rzędu, tj. o skończonej liczbie elementów; druga z nazw pochodzi od nazwiska Évariste’a Galois, który znacząco przyczynił się do rozwoju badań nad ciałami skończonymi (zob. ). Galois wskazał ich zastosowanie w tzw. teorii Galois dającej m.in. definitywną odpowiedź na pytania o rozstrzygnięcie możliwości wykonania klasycznych konstrukcji w geometrii euklidesowej czy też zgrabnie uzasadniającej brak ogólnych wzorów na pierwiastki wielomianów wyższych stopni. W artykule za naturalne uważa się dodatnie liczby całkowite, ciało proste o elementach (tzn. rzędu gdzie jest liczbą pierwszą) oznaczane będzie zamiennie jednym z symboli oraz inną stosowaną notacją jest (od ang. Galois field, ciało Galois). In matematica, in particolare in algebra, un campo finito (detto a volte anche campo di Galois) è un campo che contiene un numero finito di elementi. I campi finiti sono importanti in teoria dei numeri, geometria algebrica, teoria di Galois, in crittografia e in teoria dei codici. I campi finiti sono completamente classificati. Een eindig lichaam (Nederlandse term) of eindig veld (Belgische term), galoislichaam, galoisruimte, of galoisveld (vernoemd naar Évariste Galois) is een lichaam /veld met een eindig aantal elementen. Dit aantal, de orde van het lichaam genoemd, kan alleen maar een macht van een priemgetal zijn. Omgekeerd is er voor ieder dergelijk aantal een eindig lichaam (op isomorfie na eenduidig). Eindige lichamen/velden worden gebruikt in de cryptografie, coderingstheorie, galoistheorie, getaltheorie en algebraïsche meetkunde. Een eindig lichaam/veld van orde wordt vaak genoteerd als of , waarbij de letters G en F verwijzen naar de Engelse term Galois Field. Galois heeft eindige lichamen in 1830 ingevoerd, maar pas door toedoen van de Amerikaanse wiskundige Eliakim Moore (1862-1932) zijn eindige lichamen geclassificeerd. Eindige lichamen zijn belangrijk geworden met de komst van digitale elektronica en computers en de ontwikkeling van de informatietheorie en discrete wiskunde. 체론에서 유한체(有限體, 영어: finite field) 또는 갈루아 체(영어: Galois field)는 유한개의 원소를 가지는 체이다. Коне́чное по́ле, или по́ле Галуа́ в общей алгебре — поле, состоящее из конечного числа элементов; это число называется поря́дком поля. Конечное поле обычно обозначается или (сокращение от англ. Galois field) и называется полем Галуа порядка , где — число элементов поля.С точностью до изоморфизма конечное поле полностью определяется его порядком, который всегда является степенью какого-нибудь простого числа, то есть , где — простое число, а — любое натуральное число. При этом будет являться характеристикой этого поля. Понятие конечного поля используется в теории чисел, теории групп, алгебраической геометрии, криптографии. In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod p when p is a prime number. The order of a finite field is its number of elements, which is either a prime number or a prime power. For every prime number p and every positive integer k there are fields of order all of which are isomorphic. Finite fields are fundamental in a number of areas of mathematics and computer science, including number theory, algebraic geometry, Galois theory, finite geometry, cryptography and coding theory. في الجبر التجريدي، الحقل المحدود (بالإنجليزية: Finite fields)‏ أو حقل غالوا نسبة للعالم الفرنسي إيفاريست جالوا هو حقل يحتوي على عدد محدود من العناصر. الحقول المنتهية مهمة جدا في نظرية الأعداد والهندسة الجبرية ونظرية غالوا والتشفير ونظرية الترميز غيرها. تُصنف الحقول المنتهية حسب عدد عناصرها. تظهر الحقول المنتهية في سلسلة كما يلي: الحلقات التبادلية ⊃ integral domains ⊃ integrally closed domains ⊃ unique factorization domains ⊃ principal ideal domains ⊃ Euclidean domains ⊃ الحقول ⊃ الحقول المنتهية. 有限体(ゆうげんたい、英語:finite field)とは、代数学において、有限個の元からなる体、すなわち四則演算が定義され閉じている有限集合のことである。主に計算機関連の分野においては、発見者であるエヴァリスト・ガロアにちなんでガロア体あるいはガロア域(ガロアいき、Galois field)などとも呼ぶ。 有限体においては、体の定義における乗法の可換性についての条件の有無は問題にはならない。実際、ウェダーバーンの小定理と呼ばれる以下の定理 「有限斜体は可換体である」 が成り立つことが知られている。別な言い方をすれば、有限体において乗法の可換性は、体の有限性から導かれるということである。 Em matemática e, em especial, na teoria dos corpos, um corpo finito é um corpo em que o conjunto dos elementos é finito. Corpos finitos também são chamados corpos de Galois em honra ao matemático francês Évariste Galois. Konečné těleso (též Galoisovo těleso na počest Évarista Galoise, obvykle značeno ) je v matematice, přesněji v abstraktní algebře, označení pro takové těleso, které má konečný počet prvků. En matemàtiques i més precisament en la branca de la teoria de Galois, un cos finit, anomenat també cos de Galois és un cos el cardinal del qual és finit (té un nombre finit d'elements). Tret d'isomorfismes, tot cos finit queda completament determinat pel seu cardinal que és sempre de la forma pn, una potència d'un nombre primer. Aquest nombre primer no és altre que la seva característica (el nombre més petit de vegades que s'ha de sumar l'element neutre de la multiplicació per a obtenir l'element neutre de la suma) i el cos es presenta com l'única extensió finita del cos primitiu Z/p de dimensió n. Les aplicacions són essencialment la teoria de nombres algebraics on els cossos finits apareixen com una estructura essencial per a la geometria aritmètica. Aquesta branca ha permès, entre altres coses, demostrar l'últim teorema de Fermat. Els cossos finits s'utilitzen sovint en criptografia i en , per exemple, per determinar codis correctors eficaços. Observació sobre la terminologia: quan l'àlgebra abstracta va començar a ésser desenvolupada, la definició de cos normalment no incloïa la commutativitat de la multiplicació, així el que avui s'anomena cos fa un temps hauria estat anomenat cos commutatiu o domini racional. Avui en dia però, un cos és sempre commutatiu. Una estructura que satisfaci totes les propietats d'un cos llevat de la commutativitat, s'anomena avui encara que cos no commutatiu és encara força usat. Altres llengües han mantingut aquesta antiga notació. Així per exemple, en italià i francès, els anells de divisió se'ls anomena corpo i corps. En canvi, en anglès, alemany i espanyol, field, Körper (d'aquí ve que denoti normalment un cos) i cuerpo signifiquen cos. Cal remarcar que en francès no hi ha una paraula concreta per designar un cos, amb la qual cosa s'ha d'usar la forma corps commutatif. En italià existeix també la forma campo que es tradueix exactament per la nostra noció de cos. En el cas dels cossos finits, aquesta observació, de fet, té poca importància, ja que, segons el , tot cos finit és commutatiu. Aquest resultat es demostra amb l'ajuda dels polinomis ciclotòmics. I abstrakt algebra är en ändlig kropp en kropp med ändligt många element. Teorin om ändliga kroppar utarbetades av Carl Friedrich Gauss (1777-1855) och Évariste Galois (1811-1832), därav benämns ändliga kroppar ibland för Galoiskroppar. Ändliga kroppar har applikationer i kombinatorik, kryptologi, talteori och kodningsteori (där de bland annat används för att konstruera felrättande koder, till exempel .) En mathématiques et plus précisément en algèbre, un corps fini est un corps commutatif qui est par ailleurs fini. À isomorphisme près, un corps fini est entièrement déterminé par son cardinal, qui est toujours une puissance d'un nombre premier, ce nombre premier étant sa caractéristique. Pour tout nombre premier p et tout entier non nul n, il existe un corps de cardinal pn, qui se présente comme l'unique extension de degré n du corps premier Z/pZ. Les corps finis sont utilisés en théorie algébrique des nombres, où ils apparaissent comme une structure essentielle à la géométrie arithmétique. Cette branche a permis, entre autres, de démontrer le dernier théorème de Fermat. Les corps finis ont trouvé de nouvelles applications avec le développement de l'informatique. En théorie des codes, ils permettent par exemple de déterminer des codes correcteurs efficaces. Ils interviennent également en cryptographie, dans la conception des chiffrements à clé secrète comme le standard AES, ainsi que dans celle des chiffrement à clé publique, à travers, entre autres, le problème du logarithme discret. Remarque sur la terminologie : une convention courante en français est de considérer qu'un corps n'est pas nécessairement commutatif. Dans le cas des corps finis, la convention est en fait de peu d'importance car, d'après le théorème de Wedderburn, tout corps fini est commutatif, et, dans cet article les corps seront supposés d'emblée commutatifs. Les corps finis sont (ou ont été) appelés également corps de Galois, ou plus rarement champs de Galois. Ils ont été en effet étudiés par Évariste Galois dans un article publié en 1830 qui est à l'origine de la théorie. En fait, Carl Friedrich Gauss avait déjà découvert les résultats de Galois à la fin du XVIIIe siècle mais n'en fit pas état ; ses travaux ne furent connus qu'après sa mort et n'eurent pas l'influence de ceux de Galois. Le corps fini de cardinal q (nécessairement puissance d'un nombre premier) est noté Fq (de l'anglais field qui signifie corps commutatif) ou GF(q) (Galois field). Dalam matematika, medan berhingga (disebut juga medan Galois dari matematikawan Evariste Galois) adalah medan yang berisi elemen berjumlah berhingga. Seperti medan lainnya, medan berhingga adalah himpunan yang memiliki operasi pertambahan, pengurangan, perkalian, dan pembagian yang didefinisikan dan memenuhi aturan tertentu. Contoh umum medan berhingga adalah bilangan bulat mod p dengan p adalah bilangan prima. Medan berhingga adalah dasar dalam beberapa bidang matematika dan ilmu komputer, termasuk teori bilangan, geometri aljabar, teori Galois, , kriptografi, dan teori kode. En álgebra abstracta, un cuerpo finito, campo finito o campo de Galois (llamado así por Évariste Galois)​ es un cuerpo definido sobre un conjunto finito de elementos. Los cuerpos finitos son importantes en teoría de números, geometría algebraica, teoría de Galois, y criptografía. Todos los cuerpos finitos tienen un número de elementos q = pn, para algún número primo p y algún entero positivo n. Para cada cardinalidad q así definida hay una y solo una manera posible de definir un cuerpo finito, por lo que todos los cuerpos finitos del mismo orden son isomorfos entre sí.​ Στα μαθηματικά, ένα σώμα καλείται πεπερασμένο αν το πλήθος των στοιχείων του είναι πεπερασμένο. Ένα πεπερασμένο σώμα λέγεται αλλιώς και σώμα Γκαλουά προς τιμήν του Γάλλου μαθηματικού Γκαλουά (Évariste Galois). Τα πεπερασμένα σώματα είναι σημαντικά στην , την , την Κρυπτογραφία και τη .
dbp:authorFirst
A. I.
dbp:authorLast
Skopin
gold:hypernym
dbr:Field
prov:wasDerivedFrom
wikipedia-en:Finite_field?oldid=1124510326&ns=0
dbo:wikiPageLength
44910
foaf:isPrimaryTopicOf
wikipedia-en:Finite_field