This HTML5 document contains 79 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

PrefixNamespace IRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n14https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n16http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/
Subject Item
dbr:Filling_area_conjecture
rdf:type
yago:WikicatSurfaces yago:PhysicalEntity100001930 yago:Whole100003553 yago:Object100002684 yago:Artifact100021939 yago:Surface104362025
rdfs:label
Filling area conjecture
rdfs:comment
In differential geometry, Mikhail Gromov's filling area conjecture asserts that the hemisphere has minimum area among the orientable surfaces that fill a closed curve of given length without introducing shortcuts between its points.
foaf:depiction
n16:Steiner's_Roman_Surface.gif
foaf:isPrimaryTopicOf
wikipedia-en:Filling_area_conjecture
dbo:thumbnail
n16:Steiner's_Roman_Surface.gif?width=300
dct:subject
dbc:Systolic_geometry dbc:Differential_geometry dbc:Conjectures dbc:Riemannian_geometry dbc:Unsolved_problems_in_mathematics dbc:Area dbc:Differential_geometry_of_surfaces dbc:Surfaces
dbo:wikiPageID
12083818
dbo:wikiPageRevisionID
951114698
dbo:wikiPageWikiLink
dbr:Mikhael_Gromov_(mathematician) dbr:Systolic_geometry dbr:Compact_space dbr:Euclidean_space dbr:Rademacher's_theorem dbr:Dual_norm dbr:Metric_space dbr:Manifold dbr:Hyperelliptic_curve dbc:Area dbr:Pu's_inequality dbr:Stokes'_theorem dbc:Unsolved_problems_in_mathematics dbc:Surfaces dbr:American_Mathematical_Society dbr:Filling_radius dbc:Conjectures dbr:Finsler_manifold dbr:Nash_embedding_theorem dbr:Genus_(mathematics) dbr:Differentiable_manifold dbr:Riemannian_manifold dbr:Mikhail_Katz dbr:On_the_Sphere_and_Cylinder dbr:Kuratowski_embedding dbr:Disk_(mathematics) dbc:Systolic_geometry dbr:Almost_everywhere dbr:Sphere dbc:Riemannian_geometry dbr:Holmes–Thompson_volume dbr:Differential_geometry dbr:Differential_geometry_of_surfaces dbr:Pythagorean_theorem dbr:Uniformization_theorem dbc:Differential_geometry_of_surfaces dbr:Orientability dbr:Chain_(algebraic_topology) dbr:Homeomorphism dbr:Hausdorff_measure dbc:Differential_geometry dbr:Real_projective_plane
owl:sameAs
yago-res:Filling_area_conjecture n14:4jXBf wikidata:Q5448828 freebase:m.02vp94x
dbp:wikiPageUsesTemplate
dbt:= dbt:Citation dbt:Systolic_geometry_navbox dbt:Rp dbt:Collapse_bottom dbt:Collapse_top dbt:Reflist dbt:Math dbt:Pi
dbo:abstract
In differential geometry, Mikhail Gromov's filling area conjecture asserts that the hemisphere has minimum area among the orientable surfaces that fill a closed curve of given length without introducing shortcuts between its points.
prov:wasDerivedFrom
wikipedia-en:Filling_area_conjecture?oldid=951114698&ns=0
dbo:wikiPageLength
18087