This HTML5 document contains 41 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

PrefixNamespace IRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
n20http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
n19https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
dbpedia-pthttp://pt.dbpedia.org/resource/
n7http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/
Subject Item
dbr:Crossbar_theorem
rdf:type
yago:Statement106722453 yago:Proposition106750804 yago:Message106598915 yago:Theorem106752293 yago:Communication100033020 yago:Abstraction100002137 yago:WikicatTheoremsInGeometry
rdfs:label
Crossbar theorem Teorema das barras cruzadas
rdfs:comment
In geometry, the crossbar theorem states that if ray AD is between ray AC and ray AB, then ray AD intersects line segment BC. This result is one of the deeper results in axiomatic plane geometry. It is often used in proofs to justify the statement that a line through a vertex of a triangle lying inside the triangle meets the side of the triangle opposite that vertex. This property was often used by Euclid in his proofs without explicit justification. O teorema das barras cruzadas é um teorema de geometria que se enuncia da seguinte forma: Se o raio AD se situa (angularmente) entre o raio AC e o raio AB, então o raio AD cruza o segmento de reta BC.
foaf:depiction
n7:Crossbar_theorem_diagram.svg
foaf:isPrimaryTopicOf
wikipedia-en:Crossbar_theorem
dbo:thumbnail
n7:Crossbar_theorem_diagram.svg?width=300
dct:subject
dbc:Foundations_of_geometry dbc:Theorems_in_plane_geometry dbc:Euclidean_plane_geometry
dbo:wikiPageID
22819741
dbo:wikiPageRevisionID
967189381
dbo:wikiPageWikiLink
dbr:Jordan_curve_theorem dbr:Geometry dbc:Theorems_in_plane_geometry dbc:Euclidean_plane_geometry dbr:Foundations_of_geometry n20:Crossbar_theorem_diagram.svg dbc:Foundations_of_geometry dbr:Line_segment dbr:Line_(geometry)
owl:sameAs
wikidata:Q5188510 dbpedia-pt:Teorema_das_barras_cruzadas yago-res:Crossbar_theorem freebase:m.063z6t3 n19:4icbC
dbp:wikiPageUsesTemplate
dbt:Elementary-geometry-stub dbt:Short_description dbt:Citation dbt:Reflist
dbo:abstract
O teorema das barras cruzadas é um teorema de geometria que se enuncia da seguinte forma: Se o raio AD se situa (angularmente) entre o raio AC e o raio AB, então o raio AD cruza o segmento de reta BC. In geometry, the crossbar theorem states that if ray AD is between ray AC and ray AB, then ray AD intersects line segment BC. This result is one of the deeper results in axiomatic plane geometry. It is often used in proofs to justify the statement that a line through a vertex of a triangle lying inside the triangle meets the side of the triangle opposite that vertex. This property was often used by Euclid in his proofs without explicit justification. Some modern treatments (not Euclid's) of the proof of the theorem that the base angles of an isosceles triangle are congruent start like this: Let ABC be a triangle with side AB congruent to side AC. Draw the angle bisector of angle A and let D be the point at which it meets side BC. And so on. The justification for the existence of point D is the often unstated crossbar theorem. For this particular result, other proofs exist which do not require the use of the crossbar theorem.
prov:wasDerivedFrom
wikipedia-en:Crossbar_theorem?oldid=967189381&ns=0
dbo:wikiPageLength
2339