. . . . "En matem\u00E0tiques, el m\u00E8tode de la bisecci\u00F3 \u00E9s un d'una funci\u00F3 cont\u00EDnua en un interval. L'algorisme consisteix en dividir repetidament l'interval en dos subintervals i seleccionar el que cont\u00E9 l'arrel, fins a trobar l'arrel o una aproximaci\u00F3 d'aquesta."@ca . . . "P\u016Flen\u00ED interval\u016F"@cs . "Metode bagi-dua"@in . . . "Metodo della bisezione"@it . "En matem\u00E1ticas, el m\u00E9todo de bisecci\u00F3n , tambi\u00E9n llamado dicotom\u00EDa, es un algoritmo de b\u00FAsqueda de ra\u00EDces que trabaja dividiendo el intervalo a la mitad y seleccionando el subintervalo que tiene la ra\u00EDz."@es . . "\u6570\u5024\u89E3\u6790\u306B\u304A\u3051\u308B\u4E8C\u5206\u6CD5\uFF08\u306B\u3076\u3093\u307B\u3046\u3001\u82F1: bisection method\uFF09\u306F\u3001\u89E3\u3092\u542B\u3080\u533A\u9593\u306E\u4E2D\u9593\u70B9\u3092\u6C42\u3081\u308B\u64CD\u4F5C\u3092\u7E70\u308A\u8FD4\u3059\u3053\u3068\u306B\u3088\u3063\u3066\u65B9\u7A0B\u5F0F\u3092\u89E3\u304F\u6C42\u6839\u30A2\u30EB\u30B4\u30EA\u30BA\u30E0\u3002\u53CD\u5FA9\u6CD5\u306E\u4E00\u7A2E\u3002"@ja . . "Bisektionsmetoden"@sv . "O m\u00E9todo da bisse\u00E7\u00E3o (portugu\u00EAs brasileiro) ou m\u00E9todo da bissec\u00E7\u00E3o (portugu\u00EAs europeu) \u00E9 um m\u00E9todo de busca de ra\u00EDzes que bissecta repetidamente um intervalo e ent\u00E3o seleciona um subintervalo contendo a raiz para processamento adicional. Trata-se de um m\u00E9todo simples e robusto, mas relativamente lento quando comparado a m\u00E9todos como o m\u00E9todo de Newton ou o m\u00E9todo das secantes. Por este motivo, ele \u00E9 usado frequentemente para obter uma primeira aproxima\u00E7\u00E3o de uma solu\u00E7\u00E3o, a qual \u00E9 ent\u00E3o utilizada como ponto inicial para m\u00E9todos que convergem mais rapidamente. O m\u00E9todo tamb\u00E9m \u00E9 chamado de m\u00E9todo da pesquisa bin\u00E1ria, ou m\u00E9todo da dicotomia."@pt . "\u041C\u0435\u0442\u043E\u0434 \u0431\u0456\u0441\u0435\u043A\u0446\u0456\u0457"@uk . "In analisi numerica il metodo di bisezione (o algoritmo dicotomico) \u00E8 il metodo numerico pi\u00F9 semplice per trovare le radici di una funzione. La sua efficienza \u00E8 scarsa e presenta lo svantaggio di richiedere ipotesi particolarmente restrittive. Ha per\u00F2 il notevole pregio di essere stabile in ogni occasione e quindi di garantire sempre la buona riuscita dell'operazione."@it . "\u4E8C\u5206\u6CD5 (\u6578\u5B78)"@zh . . . . "\u0637\u0631\u064A\u0642\u0629 \u0627\u0644\u062A\u0646\u0635\u064A\u0641"@ar . . . . "\u041C\u0435\u0442\u043E\u0434 \u0431\u0438\u0441\u0435\u043A\u0446\u0438\u0438"@ru . . . . . . "In mathematics, the bisection method is a root-finding method that applies to any continuous function for which one knows two values with opposite signs. The method consists of repeatedly bisecting the interval defined by these values and then selecting the subinterval in which the function changes sign, and therefore must contain a root. It is a very simple and robust method, but it is also relatively slow. Because of this, it is often used to obtain a rough approximation to a solution which is then used as a starting point for more rapidly converging methods. The method is also called the interval halving method, the binary search method, or the dichotomy method. For polynomials, more elaborate methods exist for testing the existence of a root in an interval (Descartes' rule of signs, Sturm's theorem, Budan's theorem). They allow extending the bisection method into efficient algorithms for finding all real roots of a polynomial; see Real-root isolation."@en . . . "En matem\u00E0tiques, el m\u00E8tode de la bisecci\u00F3 \u00E9s un d'una funci\u00F3 cont\u00EDnua en un interval. L'algorisme consisteix en dividir repetidament l'interval en dos subintervals i seleccionar el que cont\u00E9 l'arrel, fins a trobar l'arrel o una aproximaci\u00F3 d'aquesta."@ca . . "\u4E8C\u5206\u6CD5\uFF08\u82F1\u8A9E\uFF1ABisection method\uFF09\uFF0C\u662F\u4E00\u7A2E\u65B9\u7A0B\u5F0F\u6839\u7684\u8FD1\u4F3C\u503C\u6C42\u6CD5\u3002"@zh . . "De halveringsmethode of bisectiemethode is een algoritme voor het oplossen van vergelijkingen. Het principe is heel eenvoudig en de methode is makkelijk op een computer te implementeren. De methode vertoont overeenkomsten met binair zoeken binnen een geordende rij gegevens."@nl . . . "Dalam matematika, metode bagi-dua adalah algoritme pencarian akar yang membagi dua selang, lalu memilih bagian selang yang berisi akar seharusnya berada untuk diproses lebih lanjut. Metode ini sangat sederhana dan tangguh, tetapi juga sangat lambat."@in . . "Bisection"@en . . . . . "De halveringsmethode of bisectiemethode is een algoritme voor het oplossen van vergelijkingen. Het principe is heel eenvoudig en de methode is makkelijk op een computer te implementeren. De methode vertoont overeenkomsten met binair zoeken binnen een geordende rij gegevens."@nl . . . . "Dalam matematika, metode bagi-dua adalah algoritme pencarian akar yang membagi dua selang, lalu memilih bagian selang yang berisi akar seharusnya berada untuk diproses lebih lanjut. Metode ini sangat sederhana dan tangguh, tetapi juga sangat lambat."@in . . "Metoda p\u016Flen\u00ED interval\u016F (bisekce) se vyu\u017E\u00EDv\u00E1 p\u0159i hled\u00E1n\u00ED p\u0159ibli\u017En\u00E9ho \u0159e\u0161en\u00ED rovnic tvaru pro spojit\u00E9 funkce . Najdeme-li dv\u011B \u010D\u00EDsla a takov\u00E1, \u017Ee plat\u00ED , kde zna\u010D\u00ED znam\u00E9nkovou funkci signum. D\u00E1le ur\u010D\u00EDme hodnotu . Podle hodnoty pak postupujeme takto: \n* na\u0161li jsme p\u0159esn\u011B ko\u0159en \n* : pod\u00EDv\u00E1me se, ve kter\u00E9m z bod\u016F a m\u00E1 funkce stejn\u00E9 znam\u00E9nko, jako v bod\u011B \n* Jde-li o bod , pak d\u00E1le uva\u017Eujeme \n* Jde-li o bod , pak d\u00E1le uva\u017Eujeme Jsou-li nyn\u00ED body a bl\u00EDzko sebe (tedy , kde je po\u017Eadovan\u00E1 p\u0159esnost), pak jsme na\u0161li p\u0159ibli\u017En\u00E9 \u0159e\u0161en\u00ED. Jinak se vr\u00E1t\u00EDme na za\u010D\u00E1tek a cel\u00FD postup opakujeme, tentokr\u00E1t ji\u017E ale s intervalem polovi\u010Dn\u00ED d\u00E9lky."@cs . "Bisection method"@en . . "O m\u00E9todo da bisse\u00E7\u00E3o (portugu\u00EAs brasileiro) ou m\u00E9todo da bissec\u00E7\u00E3o (portugu\u00EAs europeu) \u00E9 um m\u00E9todo de busca de ra\u00EDzes que bissecta repetidamente um intervalo e ent\u00E3o seleciona um subintervalo contendo a raiz para processamento adicional. Trata-se de um m\u00E9todo simples e robusto, mas relativamente lento quando comparado a m\u00E9todos como o m\u00E9todo de Newton ou o m\u00E9todo das secantes. Por este motivo, ele \u00E9 usado frequentemente para obter uma primeira aproxima\u00E7\u00E3o de uma solu\u00E7\u00E3o, a qual \u00E9 ent\u00E3o utilizada como ponto inicial para m\u00E9todos que convergem mais rapidamente. O m\u00E9todo tamb\u00E9m \u00E9 chamado de m\u00E9todo da pesquisa bin\u00E1ria, ou m\u00E9todo da dicotomia."@pt . . "Die Bisektion, auch fortgesetzte Bisektion oder Intervallhalbierungsverfahren genannt, ist ein Verfahren der Mathematik und der Informatik. Bisektion erzeugt endlich viele Glieder einer Intervallschachtelung, also eine Folge von Intervallen, die genau eine reelle Zahl definiert. Je ein Intervall entsteht aus dem vorhergehenden durch Teilung in zwei H\u00E4lften; hierf\u00FCr stehen die lateinischen Bestandteile bi (\u201Ezwei\u201C) und sectio (\u201ESchnitt\u201C) des Wortes \u201EBisektion\u201C."@de . . . . "Metoda r\u00F3wnego podzia\u0142u, metoda po\u0142owienia, metoda bisekcji, metoda po\u0142owienia przedzia\u0142u \u2013 jedna z metod rozwi\u0105zywania r\u00F3wna\u0144 nieliniowych. Opiera si\u0119 ona na twierdzeniu Darboux: Je\u017Celi funkcja ci\u0105g\u0142a ma na ko\u0144cach przedzia\u0142u domkni\u0119tego warto\u015Bci r\u00F3\u017Cnych znak\u00F3w, to wewn\u0105trz tego przedzia\u0142u, istnieje co najmniej jeden pierwiastek r\u00F3wnania . Aby mo\u017Cna by\u0142o zastosowa\u0107 metod\u0119 r\u00F3wnego podzia\u0142u, musz\u0105 by\u0107 spe\u0142nione za\u0142o\u017Cenia: 1. \n* funkcja jest ci\u0105g\u0142a w przedziale domkni\u0119tym 2. \n* funkcja przyjmuje r\u00F3\u017Cne znaki na ko\u0144cach przedzia\u0142u:"@pl . "\u0641\u064A \u0627\u0644\u0631\u064A\u0627\u0636\u064A\u0627\u062A\u060C \u0637\u0631\u064A\u0642\u0629 \u0627\u0644\u062A\u0646\u0635\u064A\u0641 \u0647\u064A \u0625\u062D\u062F\u0649 \u062E\u0648\u0627\u0631\u0632\u0645\u064A\u0629 \u0627\u064A\u062C\u0627\u062F \u0627\u0644\u062C\u0630\u0631 \u0648\u0627\u0644\u062A\u064A \u0628\u0647\u0627 \u064A\u062A\u0645 \u062A\u0646\u0635\u064A\u0641 \u0641\u062A\u0631\u0629 \u0645\u0627 \u0628\u0635\u0648\u0631\u0629 \u062A\u0643\u0631\u0627\u0631\u064A\u0629 \u0648\u0627\u062E\u062A\u064A\u0627\u0631 \u0641\u062A\u0631\u0629 \u0641\u0631\u0639\u064A\u0629 \u064A\u0642\u0639 \u0639\u0644\u064A\u0647\u0627 \u0627\u0644\u062C\u0630\u0631 \u0645\u0646 \u0623\u062C\u0644 \u062A\u062D\u0633\u064A\u0646 \u0627\u0644\u0645\u0639\u0627\u0644\u062C\u0629. \u0645\u0639 \u0623\u0646\u0647\u0627 \u0628\u0633\u064A\u0637\u0629 \u062C\u062F\u0627 \u0648\u0645\u0631\u0646\u0629 \u0625\u0644\u0627 \u0623\u0646 \u0637\u0631\u064A\u0642\u0629 \u0627\u0644\u062A\u0646\u0635\u064A\u0641 \u0628\u0637\u064A\u0626\u0629 \u0646\u0633\u0628\u064A\u0627."@ar . . . . . . . "\u0641\u064A \u0627\u0644\u0631\u064A\u0627\u0636\u064A\u0627\u062A\u060C \u0637\u0631\u064A\u0642\u0629 \u0627\u0644\u062A\u0646\u0635\u064A\u0641 \u0647\u064A \u0625\u062D\u062F\u0649 \u062E\u0648\u0627\u0631\u0632\u0645\u064A\u0629 \u0627\u064A\u062C\u0627\u062F \u0627\u0644\u062C\u0630\u0631 \u0648\u0627\u0644\u062A\u064A \u0628\u0647\u0627 \u064A\u062A\u0645 \u062A\u0646\u0635\u064A\u0641 \u0641\u062A\u0631\u0629 \u0645\u0627 \u0628\u0635\u0648\u0631\u0629 \u062A\u0643\u0631\u0627\u0631\u064A\u0629 \u0648\u0627\u062E\u062A\u064A\u0627\u0631 \u0641\u062A\u0631\u0629 \u0641\u0631\u0639\u064A\u0629 \u064A\u0642\u0639 \u0639\u0644\u064A\u0647\u0627 \u0627\u0644\u062C\u0630\u0631 \u0645\u0646 \u0623\u062C\u0644 \u062A\u062D\u0633\u064A\u0646 \u0627\u0644\u0645\u0639\u0627\u0644\u062C\u0629. \u0645\u0639 \u0623\u0646\u0647\u0627 \u0628\u0633\u064A\u0637\u0629 \u062C\u062F\u0627 \u0648\u0645\u0631\u0646\u0629 \u0625\u0644\u0627 \u0623\u0646 \u0637\u0631\u064A\u0642\u0629 \u0627\u0644\u062A\u0646\u0635\u064A\u0641 \u0628\u0637\u064A\u0626\u0629 \u0646\u0633\u0628\u064A\u0627."@ar . . . . . . . . . "Bisektion"@de . . "Halveringsmethode"@nl . . "Bisektionsmetoden \u00E4r en metod inom numerisk analys f\u00F6r att f\u00F6rs\u00F6ka best\u00E4mma ett flyttal x s\u00E5 att d\u00E5 f \u00E4r en kontinuerlig funktion."@sv . "\u4E8C\u5206\u6CD5\uFF08\u82F1\u8A9E\uFF1ABisection method\uFF09\uFF0C\u662F\u4E00\u7A2E\u65B9\u7A0B\u5F0F\u6839\u7684\u8FD1\u4F3C\u503C\u6C42\u6CD5\u3002"@zh . "16142"^^ . . . . . . "Metoda p\u016Flen\u00ED interval\u016F (bisekce) se vyu\u017E\u00EDv\u00E1 p\u0159i hled\u00E1n\u00ED p\u0159ibli\u017En\u00E9ho \u0159e\u0161en\u00ED rovnic tvaru pro spojit\u00E9 funkce . Najdeme-li dv\u011B \u010D\u00EDsla a takov\u00E1, \u017Ee plat\u00ED , kde zna\u010D\u00ED znam\u00E9nkovou funkci signum. D\u00E1le ur\u010D\u00EDme hodnotu . Podle hodnoty pak postupujeme takto: \n* na\u0161li jsme p\u0159esn\u011B ko\u0159en \n* : pod\u00EDv\u00E1me se, ve kter\u00E9m z bod\u016F a m\u00E1 funkce stejn\u00E9 znam\u00E9nko, jako v bod\u011B \n* Jde-li o bod , pak d\u00E1le uva\u017Eujeme \n* Jde-li o bod , pak d\u00E1le uva\u017Eujeme"@cs . "\uC218\uD559\uC5D0\uC11C \uC774\uBD84\uBC95(\u4E8C\u5206\u6CD5, Bisection method)\uC740 \uADFC\uC774 \uBC18\uB4DC\uC2DC \uC874\uC7AC\uD558\uB294 \uD3D0\uAD6C\uAC04\uC744 \uC774\uBD84\uD55C \uD6C4, \uC774 \uC911 \uADFC\uC774 \uC874\uC7AC\uD558\uB294 \uD558\uC704 \uD3D0\uAD6C\uAC04\uC744 \uC120\uD0DD\uD558\uB294 \uAC83\uC744 \uBC18\uBCF5\uD558\uC5EC\uC11C \uADFC\uC744 \uCC3E\uB294 \uC54C\uACE0\uB9AC\uC998\uC774\uB2E4. \uAC04\uB2E8\uD558\uACE0 \uACAC\uACE0\uD558\uBA70 \uD574\uC758 \uB300\uB7B5\uC801 \uC704\uCE58\uB97C \uC548\uB2E4\uBA74 \uC77C\uC815 \uC624\uCC28 \uB0B4\uC5D0 \uC788\uB294 1\uAC1C\uC758 \uD574\uB294 \uBB34\uC870\uAC74 \uB3C4\uCD9C\uC774 \uAC00\uB2A5\uD558\uB098, \uC0C1\uB300\uC801\uC73C\uB85C \uB290\uB9B0 \uBC29\uC2DD\uC774\uB2E4. \uC774\uBD84\uBC95\uC740 \uADFC\uC774 \uC874\uC7AC\uD55C\uB2E4\uB294 \uAC83 \uC790\uCCB4\uB97C \uC804\uC81C\uB85C \uAD6C\uAC04\uC744 \uC124\uC815\uD558\uB294 \uAC83\uC774\uBBC0\uB85C \uADFC\uC774 \uC874\uC7AC\uD560 \uAC00\uB2A5\uC131\uC740 100%\uC774\uBBC0\uB85C \uBC29\uC815\uC2DD\uC774 \uAC04\uB2E8\uD558\uACE0 \uADFC \uC790\uCCB4\uAC00 \uAC00\uC7A5 \uC911\uC694\uD55C \uBAA9\uC801\uC778 \uACBD\uC6B0 \uAC00\uC7A5 \uC801\uD569\uD55C \uBC29\uBC95\uC774\uB2E4."@ko . "Metoda r\u00F3wnego podzia\u0142u"@pl . "\u041C\u0435\u0442\u043E\u0434 \u0431\u0438\u0441\u0435\u043A\u0446\u0438\u0438 \u0438\u043B\u0438 \u043C\u0435\u0442\u043E\u0434 \u0434\u0435\u043B\u0435\u043D\u0438\u044F \u043E\u0442\u0440\u0435\u0437\u043A\u0430 \u043F\u043E\u043F\u043E\u043B\u0430\u043C \u2014 \u043F\u0440\u043E\u0441\u0442\u0435\u0439\u0448\u0438\u0439 \u0447\u0438\u0441\u043B\u0435\u043D\u043D\u044B\u0439 \u043C\u0435\u0442\u043E\u0434 \u0434\u043B\u044F \u0440\u0435\u0448\u0435\u043D\u0438\u044F \u043D\u0435\u043B\u0438\u043D\u0435\u0439\u043D\u044B\u0445 \u0443\u0440\u0430\u0432\u043D\u0435\u043D\u0438\u0439 \u0432\u0438\u0434\u0430 f(x)=0. \u041F\u0440\u0435\u0434\u043F\u043E\u043B\u0430\u0433\u0430\u0435\u0442\u0441\u044F \u0442\u043E\u043B\u044C\u043A\u043E \u043D\u0435\u043F\u0440\u0435\u0440\u044B\u0432\u043D\u043E\u0441\u0442\u044C \u0444\u0443\u043D\u043A\u0446\u0438\u0438 f(x). \u041F\u043E\u0438\u0441\u043A \u043E\u0441\u043D\u043E\u0432\u044B\u0432\u0430\u0435\u0442\u0441\u044F \u043D\u0430 \u0442\u0435\u043E\u0440\u0435\u043C\u0435 \u043E \u043F\u0440\u043E\u043C\u0435\u0436\u0443\u0442\u043E\u0447\u043D\u044B\u0445 \u0437\u043D\u0430\u0447\u0435\u043D\u0438\u044F\u0445."@ru . "\uC774\uBD84\uBC95 (\uC218\uD559)"@ko . "\u041C\u0435\u0442\u043E\u0434 \u0431\u0438\u0441\u0435\u043A\u0446\u0438\u0438 \u0438\u043B\u0438 \u043C\u0435\u0442\u043E\u0434 \u0434\u0435\u043B\u0435\u043D\u0438\u044F \u043E\u0442\u0440\u0435\u0437\u043A\u0430 \u043F\u043E\u043F\u043E\u043B\u0430\u043C \u2014 \u043F\u0440\u043E\u0441\u0442\u0435\u0439\u0448\u0438\u0439 \u0447\u0438\u0441\u043B\u0435\u043D\u043D\u044B\u0439 \u043C\u0435\u0442\u043E\u0434 \u0434\u043B\u044F \u0440\u0435\u0448\u0435\u043D\u0438\u044F \u043D\u0435\u043B\u0438\u043D\u0435\u0439\u043D\u044B\u0445 \u0443\u0440\u0430\u0432\u043D\u0435\u043D\u0438\u0439 \u0432\u0438\u0434\u0430 f(x)=0. \u041F\u0440\u0435\u0434\u043F\u043E\u043B\u0430\u0433\u0430\u0435\u0442\u0441\u044F \u0442\u043E\u043B\u044C\u043A\u043E \u043D\u0435\u043F\u0440\u0435\u0440\u044B\u0432\u043D\u043E\u0441\u0442\u044C \u0444\u0443\u043D\u043A\u0446\u0438\u0438 f(x). \u041F\u043E\u0438\u0441\u043A \u043E\u0441\u043D\u043E\u0432\u044B\u0432\u0430\u0435\u0442\u0441\u044F \u043D\u0430 \u0442\u0435\u043E\u0440\u0435\u043C\u0435 \u043E \u043F\u0440\u043E\u043C\u0435\u0436\u0443\u0442\u043E\u0447\u043D\u044B\u0445 \u0437\u043D\u0430\u0447\u0435\u043D\u0438\u044F\u0445."@ru . . . "Die Bisektion, auch fortgesetzte Bisektion oder Intervallhalbierungsverfahren genannt, ist ein Verfahren der Mathematik und der Informatik. Bisektion erzeugt endlich viele Glieder einer Intervallschachtelung, also eine Folge von Intervallen, die genau eine reelle Zahl definiert. Je ein Intervall entsteht aus dem vorhergehenden durch Teilung in zwei H\u00E4lften; hierf\u00FCr stehen die lateinischen Bestandteile bi (\u201Ezwei\u201C) und sectio (\u201ESchnitt\u201C) des Wortes \u201EBisektion\u201C. Grunds\u00E4tzlich finden Bisektionsverfahren immer dann Anwendung, wenn ein Problem gel\u00F6st werden kann, indem es in zwei etwa gleich gro\u00DFe Teilprobleme zerlegt wird, die dann einzeln f\u00FCr sich behandelt werden k\u00F6nnen."@de . . "646651"^^ . . "M\u00E9thode de dichotomie"@fr . "\u4E8C\u5206\u6CD5"@ja . "La m\u00E9thode de dichotomie ou m\u00E9thode de la bissection est, en math\u00E9matiques, un algorithme de recherche d'un z\u00E9ro d'une fonction qui consiste \u00E0 r\u00E9p\u00E9ter des partages d\u2019un intervalle en deux parties puis \u00E0 s\u00E9lectionner le sous-intervalle dans lequel existe un z\u00E9ro de la fonction."@fr . "Metoda r\u00F3wnego podzia\u0142u, metoda po\u0142owienia, metoda bisekcji, metoda po\u0142owienia przedzia\u0142u \u2013 jedna z metod rozwi\u0105zywania r\u00F3wna\u0144 nieliniowych. Opiera si\u0119 ona na twierdzeniu Darboux: Je\u017Celi funkcja ci\u0105g\u0142a ma na ko\u0144cach przedzia\u0142u domkni\u0119tego warto\u015Bci r\u00F3\u017Cnych znak\u00F3w, to wewn\u0105trz tego przedzia\u0142u, istnieje co najmniej jeden pierwiastek r\u00F3wnania . Aby mo\u017Cna by\u0142o zastosowa\u0107 metod\u0119 r\u00F3wnego podzia\u0142u, musz\u0105 by\u0107 spe\u0142nione za\u0142o\u017Cenia: 1. \n* funkcja jest ci\u0105g\u0142a w przedziale domkni\u0119tym 2. \n* funkcja przyjmuje r\u00F3\u017Cne znaki na ko\u0144cach przedzia\u0142u:"@pl . "Bisektionsmetoden \u00E4r en metod inom numerisk analys f\u00F6r att f\u00F6rs\u00F6ka best\u00E4mma ett flyttal x s\u00E5 att d\u00E5 f \u00E4r en kontinuerlig funktion."@sv . . . "1118923981"^^ . . "M\u00E9todo de bisecci\u00F3n"@es . . . . . "En matem\u00E1ticas, el m\u00E9todo de bisecci\u00F3n , tambi\u00E9n llamado dicotom\u00EDa, es un algoritmo de b\u00FAsqueda de ra\u00EDces que trabaja dividiendo el intervalo a la mitad y seleccionando el subintervalo que tiene la ra\u00EDz."@es . . . "Bisection"@en . "La m\u00E9thode de dichotomie ou m\u00E9thode de la bissection est, en math\u00E9matiques, un algorithme de recherche d'un z\u00E9ro d'une fonction qui consiste \u00E0 r\u00E9p\u00E9ter des partages d\u2019un intervalle en deux parties puis \u00E0 s\u00E9lectionner le sous-intervalle dans lequel existe un z\u00E9ro de la fonction."@fr . "In analisi numerica il metodo di bisezione (o algoritmo dicotomico) \u00E8 il metodo numerico pi\u00F9 semplice per trovare le radici di una funzione. La sua efficienza \u00E8 scarsa e presenta lo svantaggio di richiedere ipotesi particolarmente restrittive. Ha per\u00F2 il notevole pregio di essere stabile in ogni occasione e quindi di garantire sempre la buona riuscita dell'operazione."@it . . . . . . . . . . "\u041C\u0435\u0442\u043E\u0434 \u0431\u0456\u0441\u0435\u043A\u0446\u0456\u0457 \u0430\u0431\u043E \u043C\u0435\u0442\u043E\u0434 \u043F\u043E\u0434\u0456\u043B\u0443 \u0432\u0456\u0434\u0440\u0456\u0437\u043A\u0430 \u043D\u0430\u0432\u043F\u0456\u043B \u2014 \u043D\u0430\u0439\u043F\u0440\u043E\u0441\u0442\u0456\u0448\u0438\u0439 \u0447\u0438\u0441\u0435\u043B\u044C\u043D\u0438\u0439 \u043C\u0435\u0442\u043E\u0434 \u0434\u043B\u044F \u0432\u0438\u0440\u0456\u0448\u0435\u043D\u043D\u044F \u0432\u0438\u0434\u0443 f(x)=0. \u041F\u0435\u0440\u0435\u0434\u0431\u0430\u0447\u0430\u0454\u0442\u044C\u0441\u044F \u0442\u0456\u043B\u044C\u043A\u0438 \u0431\u0435\u0437\u043F\u0435\u0440\u0435\u0440\u0432\u043D\u0456\u0441\u0442\u044C \u0444\u0443\u043D\u043A\u0446\u0456\u0457 f(x). \u041F\u043E\u0448\u0443\u043A \u0491\u0440\u0443\u043D\u0442\u0443\u0454\u0442\u044C\u0441\u044F \u043D\u0430 \u0442\u0435\u043E\u0440\u0435\u043C\u0456 \u043F\u0440\u043E \u043F\u0440\u043E\u043C\u0456\u0436\u043D\u0456 \u0437\u043D\u0430\u0447\u0435\u043D\u043D\u044F."@uk . . "In mathematics, the bisection method is a root-finding method that applies to any continuous function for which one knows two values with opposite signs. The method consists of repeatedly bisecting the interval defined by these values and then selecting the subinterval in which the function changes sign, and therefore must contain a root. It is a very simple and robust method, but it is also relatively slow. Because of this, it is often used to obtain a rough approximation to a solution which is then used as a starting point for more rapidly converging methods. The method is also called the interval halving method, the binary search method, or the dichotomy method."@en . "M\u00E9todo da bisse\u00E7\u00E3o"@pt . . . "\u041C\u0435\u0442\u043E\u0434 \u0431\u0456\u0441\u0435\u043A\u0446\u0456\u0457 \u0430\u0431\u043E \u043C\u0435\u0442\u043E\u0434 \u043F\u043E\u0434\u0456\u043B\u0443 \u0432\u0456\u0434\u0440\u0456\u0437\u043A\u0430 \u043D\u0430\u0432\u043F\u0456\u043B \u2014 \u043D\u0430\u0439\u043F\u0440\u043E\u0441\u0442\u0456\u0448\u0438\u0439 \u0447\u0438\u0441\u0435\u043B\u044C\u043D\u0438\u0439 \u043C\u0435\u0442\u043E\u0434 \u0434\u043B\u044F \u0432\u0438\u0440\u0456\u0448\u0435\u043D\u043D\u044F \u0432\u0438\u0434\u0443 f(x)=0. \u041F\u0435\u0440\u0435\u0434\u0431\u0430\u0447\u0430\u0454\u0442\u044C\u0441\u044F \u0442\u0456\u043B\u044C\u043A\u0438 \u0431\u0435\u0437\u043F\u0435\u0440\u0435\u0440\u0432\u043D\u0456\u0441\u0442\u044C \u0444\u0443\u043D\u043A\u0446\u0456\u0457 f(x). \u041F\u043E\u0448\u0443\u043A \u0491\u0440\u0443\u043D\u0442\u0443\u0454\u0442\u044C\u0441\u044F \u043D\u0430 \u0442\u0435\u043E\u0440\u0435\u043C\u0456 \u043F\u0440\u043E \u043F\u0440\u043E\u043C\u0456\u0436\u043D\u0456 \u0437\u043D\u0430\u0447\u0435\u043D\u043D\u044F."@uk . . "\u6570\u5024\u89E3\u6790\u306B\u304A\u3051\u308B\u4E8C\u5206\u6CD5\uFF08\u306B\u3076\u3093\u307B\u3046\u3001\u82F1: bisection method\uFF09\u306F\u3001\u89E3\u3092\u542B\u3080\u533A\u9593\u306E\u4E2D\u9593\u70B9\u3092\u6C42\u3081\u308B\u64CD\u4F5C\u3092\u7E70\u308A\u8FD4\u3059\u3053\u3068\u306B\u3088\u3063\u3066\u65B9\u7A0B\u5F0F\u3092\u89E3\u304F\u6C42\u6839\u30A2\u30EB\u30B4\u30EA\u30BA\u30E0\u3002\u53CD\u5FA9\u6CD5\u306E\u4E00\u7A2E\u3002"@ja . . . "\uC218\uD559\uC5D0\uC11C \uC774\uBD84\uBC95(\u4E8C\u5206\u6CD5, Bisection method)\uC740 \uADFC\uC774 \uBC18\uB4DC\uC2DC \uC874\uC7AC\uD558\uB294 \uD3D0\uAD6C\uAC04\uC744 \uC774\uBD84\uD55C \uD6C4, \uC774 \uC911 \uADFC\uC774 \uC874\uC7AC\uD558\uB294 \uD558\uC704 \uD3D0\uAD6C\uAC04\uC744 \uC120\uD0DD\uD558\uB294 \uAC83\uC744 \uBC18\uBCF5\uD558\uC5EC\uC11C \uADFC\uC744 \uCC3E\uB294 \uC54C\uACE0\uB9AC\uC998\uC774\uB2E4. \uAC04\uB2E8\uD558\uACE0 \uACAC\uACE0\uD558\uBA70 \uD574\uC758 \uB300\uB7B5\uC801 \uC704\uCE58\uB97C \uC548\uB2E4\uBA74 \uC77C\uC815 \uC624\uCC28 \uB0B4\uC5D0 \uC788\uB294 1\uAC1C\uC758 \uD574\uB294 \uBB34\uC870\uAC74 \uB3C4\uCD9C\uC774 \uAC00\uB2A5\uD558\uB098, \uC0C1\uB300\uC801\uC73C\uB85C \uB290\uB9B0 \uBC29\uC2DD\uC774\uB2E4. \uC774\uBD84\uBC95\uC740 \uADFC\uC774 \uC874\uC7AC\uD55C\uB2E4\uB294 \uAC83 \uC790\uCCB4\uB97C \uC804\uC81C\uB85C \uAD6C\uAC04\uC744 \uC124\uC815\uD558\uB294 \uAC83\uC774\uBBC0\uB85C \uADFC\uC774 \uC874\uC7AC\uD560 \uAC00\uB2A5\uC131\uC740 100%\uC774\uBBC0\uB85C \uBC29\uC815\uC2DD\uC774 \uAC04\uB2E8\uD558\uACE0 \uADFC \uC790\uCCB4\uAC00 \uAC00\uC7A5 \uC911\uC694\uD55C \uBAA9\uC801\uC778 \uACBD\uC6B0 \uAC00\uC7A5 \uC801\uD569\uD55C \uBC29\uBC95\uC774\uB2E4."@ko . . . . "M\u00E8tode de la bisecci\u00F3"@ca . .