This HTML5 document contains 23 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

PrefixNamespace IRI
dcthttp://purl.org/dc/terms/
n18http://www.cut-the-knot.org/Generalization/
dbohttp://dbpedia.org/ontology/
n16http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
n12https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n8http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/
Subject Item
dbr:Auxiliary_line
rdfs:label
Auxiliary line
rdfs:comment
An auxiliary line (or helping line) is an extra line needed to complete a proof in plane geometry. Other common auxiliary constructs in elementary plane synthetic geometry are the helping circles. As an example, a proof of the theorem on the sum of angles of a triangle can be done by adding a straight line parallel to one of the triangle sides (passing through the opposite vertex).
foaf:depiction
n8:Angles_of_triangle_add_up_to_180_degrees.png
foaf:isPrimaryTopicOf
wikipedia-en:Auxiliary_line
dbo:thumbnail
n8:Angles_of_triangle_add_up_to_180_degrees.png?width=300
dct:subject
dbc:Geometry
dbo:wikiPageID
40054744
dbo:wikiPageRevisionID
925883958
dbo:wikiPageWikiLink
dbr:Mathematical_proof dbr:Sum_of_angles_of_a_triangle dbc:Geometry dbr:Euclidean_geometry n16:Angles_of_triangle_add_up_to_180_degrees.png dbr:Line_(geometry)
dbo:wikiPageExternalLink
n18:MenelausByEinstein.shtml
owl:sameAs
n12:ewQ2 freebase:m.0wdvwrn wikidata:Q16915959
dbp:wikiPageUsesTemplate
dbt:Elementary-geometry-stub dbt:Reflist
dbo:abstract
An auxiliary line (or helping line) is an extra line needed to complete a proof in plane geometry. Other common auxiliary constructs in elementary plane synthetic geometry are the helping circles. As an example, a proof of the theorem on the sum of angles of a triangle can be done by adding a straight line parallel to one of the triangle sides (passing through the opposite vertex). Although the adding of auxiliary constructs can often make a problem obvious, it's not at all obvious to discover the helpful construct among all the possibilities, and for this reason many prefer to use more systematic methods for the solution of geometric problems (such as the coordinate method, which requires much less ingenuity).
prov:wasDerivedFrom
wikipedia-en:Auxiliary_line?oldid=925883958&ns=0
dbo:wikiPageLength
1635