. . . . . . "Zdarzenie tr\u00F3jd\u017Cetowe \u2013 w fizyce cz\u0105stek elementarnych jest zdarzeniem, w rezultacie kt\u00F3rego powstaj\u0105 cz\u0105stki skupione w trzech d\u017Cetach (strugach). Pojedynczy d\u017Cet zawiera cz\u0105stki poruszaj\u0105ce si\u0119 w zbli\u017Conym kierunku. Mo\u017Cna narysowa\u0107 trzy sto\u017Cki wychodz\u0105ce z miejsca zdarzenia, odpowiadaj\u0105ce poszczeg\u00F3lnym d\u017Cetom, w ten spos\u00F3b, \u017Ce ka\u017Cda z wynikowych cz\u0105stek b\u0119dzie si\u0119 znajdowa\u0142a w kt\u00F3rym\u015B ze sto\u017Ck\u00F3w. Zdarzenia te s\u0105 obecnie najbardziej bezpo\u015Brednimi dowodami na istnienie gluon\u00F3w. Zosta\u0142y po raz pierwszy zaobserwowane w eksperymencie , przeprowadzonym w akceleratorze PETRA w laboratorium DESY. \n*"@pl . . . . . "Zdarzenie tr\u00F3jd\u017Cetowe"@pl . . "Zdarzenie tr\u00F3jd\u017Cetowe \u2013 w fizyce cz\u0105stek elementarnych jest zdarzeniem, w rezultacie kt\u00F3rego powstaj\u0105 cz\u0105stki skupione w trzech d\u017Cetach (strugach). Pojedynczy d\u017Cet zawiera cz\u0105stki poruszaj\u0105ce si\u0119 w zbli\u017Conym kierunku. Mo\u017Cna narysowa\u0107 trzy sto\u017Cki wychodz\u0105ce z miejsca zdarzenia, odpowiadaj\u0105ce poszczeg\u00F3lnym d\u017Cetom, w ten spos\u00F3b, \u017Ce ka\u017Cda z wynikowych cz\u0105stek b\u0119dzie si\u0119 znajdowa\u0142a w kt\u00F3rym\u015B ze sto\u017Ck\u00F3w. Zdarzenia te s\u0105 obecnie najbardziej bezpo\u015Brednimi dowodami na istnienie gluon\u00F3w. Zosta\u0142y po raz pierwszy zaobserwowane w eksperymencie , przeprowadzonym w akceleratorze PETRA w laboratorium DESY. Poniewa\u017C d\u017Cety powstaj\u0105 zwykle podczas hadronizacji kwark\u00F3w, a kwarki powstaj\u0105 tylko w parach, potrzebna jest dodatkowa cz\u0105stka do wyja\u015Bnienia nieparzystej liczby d\u017Cet\u00F3w. Chromodynamika kwantowa twierdzi, \u017Ce cz\u0105stk\u0105 tak\u0105 jest w szczeg\u00F3lno\u015Bci energetyczny gluon, wypromieniowany przez jeden z kwark\u00F3w. Szczeg\u00F3lnie frapuj\u0105c\u0105 w\u0142a\u015Bciwo\u015Bci\u0105 zdarze\u0144 tr\u00F3jd\u017Cetowych, zaobserwowanych w DESY i szczeg\u00F3\u0142owo przeanalizowanych eksperymentalnie w zderzaczu LEP, jest ich sp\u00F3jno\u015B\u0107 z . Model ten zak\u0142ada, \u017Ce \u201Estruny\u201D niskoenergetycznych gluon\u00F3w formuj\u0105 si\u0119 najmocniej pomi\u0119dzy kwarkami a wysokoenergetycznymi gluonami oraz \u017Ce przerwanie takiej struny w now\u0105 par\u0119 kwark-antykwark (cz\u0119\u015B\u0107 procesu hadronizacji) skutkuje powstawaniem \u201Ezb\u0142\u0105kanych\u201D hadron\u00F3w pomi\u0119dzy d\u017Cetami (w tej samej p\u0142aszczy\u017Anie). Poniewa\u017C oddzia\u0142ywanie kwark-gluon jest silniejsze od oddzia\u0142ywa\u0144 kwark-kwark, hadrony takie powinno si\u0119 obserwowa\u0107 najrzadziej pomi\u0119dzy d\u017Cetami dw\u00F3ch kwark\u00F3w. W rezultacie model przewiduje, \u017Ce zb\u0142\u0105kane hadrony nie pojawi\u0105 si\u0119 pomi\u0119dzy tymi dwoma d\u017Cetami, ale pomi\u0119dzy ka\u017Cdym z nich i trzecim. Dok\u0142adnie takie zjawisko zaobserwowano. W ramach testu fizycy rozwa\u017Cyli zdarzenie z fotonem powstaj\u0105cym w podobnym procesie. W tym przypadku oddzia\u0142ywanie kwark-kwark jest jedynym oddzia\u0142ywaniem silnym, wi\u0119c \u201Estruny\u201D tworz\u0105 si\u0119 pomi\u0119dzy kwarkami a zb\u0142\u0105kane hadrony wyst\u0119puj\u0105 pomi\u0119dzy ich d\u017Cetami. Owa r\u00F3\u017Cnica mi\u0119dzy zdarzeniami tr\u00F3jd\u017Cetowym a dwud\u017Cetowym z energetycznym fotonem, z kt\u00F3rych wynikaj\u0105 unikalne w\u0142a\u015Bciwo\u015Bci z powodu oddzia\u0142ywa\u0144 silnych, mo\u017Ce by\u0107 wyja\u015Bniona tylko przez istnienie nowej cz\u0105stki w tamtym d\u017Cecie, b\u0119d\u0105cej gluonem. Schemat rozumowania przedstawiony jest poni\u017Cej. Rysunki te nie s\u0105 diagramami Feynmana, s\u0105 dwuwymiarowymi \u201Emigawkami\u201D zdarzenia. \n* Dwa kwarki (linie ci\u0105g\u0142e) oraz gluon (linia kr\u0119cona) rozlatuj\u0105 si\u0119 w r\u00F3\u017Cne strony, ze (czerwone paski) pomi\u0119dzy gluonem a ka\u017Cdym z kwark\u00F3w. \n* Jako rezultat tworz\u0105 si\u0119 trzy d\u017Cety (sto\u017Cki), z dodatkowymi hadronami (strza\u0142ki) tam, gdzie by\u0142y struny. \n* Dla por\u00F3wnania fizycy patrzyli na zdarzenie z dwoma kwarkami i fotonem (linia falowana). Tutaj struny formuj\u0105 si\u0119 tylko pomi\u0119dzy kwarkami. \n* A zatem dodatkowe hadrony powstaj\u0105 tylko pomi\u0119dzy dwoma d\u017Cetami, co jest zgodne z obserwacj\u0105."@pl . . . "2574002"^^ . . . . . . . . "In particle physics, a three-jet event is an event with many particles in final state that appear to be clustered in three jets. A single jet consists of particles that fly off in roughly the same direction. One can draw three cones from the interaction point, corresponding to the jets, and most particles created in the reaction will appear to belong to one of these cones. These events are currently the most direct available evidence for the existence of gluons, and were first observed by the TASSO experiment at the PETRA accelerator at the DESY laboratory. \n* \n* \n* \n*"@en . . . . . . . . . . "In fisica delle particelle, un evento a tre jet \u00E8 un evento con molte particelle nello stato finale che appaiono raggruppate in tre . Un singolo jet \u00E8 composto da particelle che si muovono circa nella stessa direzione. Si pu\u00F2 immaginare tre coni che provengono dal punto di interazione, corrispondenti ai jet, e la maggior parte delle particelle che sono generate all'interno di questi coni. Questi eventi sono al giorno d'oggi la prova pi\u00F9 diretta dell'esistenza dei gluoni, e sono stati osservati per primi nell'esperimento all'acceleratore ai laboratori DESY."@it . . . "In fisica delle particelle, un evento a tre jet \u00E8 un evento con molte particelle nello stato finale che appaiono raggruppate in tre . Un singolo jet \u00E8 composto da particelle che si muovono circa nella stessa direzione. Si pu\u00F2 immaginare tre coni che provengono dal punto di interazione, corrispondenti ai jet, e la maggior parte delle particelle che sono generate all'interno di questi coni. Questi eventi sono al giorno d'oggi la prova pi\u00F9 diretta dell'esistenza dei gluoni, e sono stati osservati per primi nell'esperimento all'acceleratore ai laboratori DESY. Poich\u00E9 i jet sono di solito prodotti quando i quark adronizzano, e i quark sono prodotti solo in coppie, una particella addizionale \u00E8 richiesta per spiegare gli eventi contenenti un numero dispari di jet. La cromodinamica quantistica indica queste particelle essere dei gluoni energetici, irraggiati da uno dei quark."@it . . . . . . . . . . . "1002889271"^^ . . . . . . "9211"^^ . . . . . . . "In particle physics, a three-jet event is an event with many particles in final state that appear to be clustered in three jets. A single jet consists of particles that fly off in roughly the same direction. One can draw three cones from the interaction point, corresponding to the jets, and most particles created in the reaction will appear to belong to one of these cones. These events are currently the most direct available evidence for the existence of gluons, and were first observed by the TASSO experiment at the PETRA accelerator at the DESY laboratory. Since jets are ordinarily produced when quarks hadronize, and quarks are produced only in pairs, an additional particle is required to explain events containing an odd number of jets. Quantum chromodynamics indicates that this particle is a particularly energetic gluon, radiated by one of the quarks, which hadronizes much as a quark does. A particularly striking feature of these events, which were first observed at DESY and studied in great detail by experiments at the LEP collider, is their consistency with the Lund string model. The model indicates that \"strings\" of low-energy gluons will form most strongly between the quarks and the high-energy gluons, and that the \"breaking\" of these strings into new quark\u2013antiquark pairs (part of the hadronization process) will result in some \"stray\" hadrons between the jets (and in the same plane). Since the quark-gluon interaction is stronger than the quark-quark interaction, such hadrons will be observed much less frequently between the two quark jets. As a result, the model predicts that stray hadrons will not appear between two of the jets, but will appear between each of them and the third. This is precisely what is observed. As a check, physicists have also considered events with a photon produced in a similar process. In this case, the quark\u2013quark interaction is the only strong interaction, so a \"string\" forms between the two quarks, and stray hadrons now appear between the corresponding jets. This difference between the three-jet events and the two-jet events with a high-energy photon, which indicates that the third jet has unique properties under the strong interaction, can only be explained by the original particle in that jet being a gluon. The line of reasoning is illustrated below. The drawings are not Feynman diagrams; they are \"snapshots\" in time and show two spatial dimensions. \n* Two quarks (solid lines) and a gluon (curly line) fly apart, with the strings (red bars) primarily between the gluon and each quark. \n* As a result, three jets (cones) form, with extra hadrons (arrows) found where the strings formed. \n* For comparison, physicists looked at events with two quarks and a photon (wavy line). Here the string forms only between quarks. \n* Therefore extra hadrons are found only between the two jets, which is inconsistent with observations."@en . . . "Three-jet event"@en . . . . . . "Evento a tre jet"@it . . . . . . . .