. . . . "La limite de Shockley-Queisser est l'efficacit\u00E9 th\u00E9orique maximale d'une cellule photovolta\u00EFque utilisant une seule jonction P-N. Elle a d'abord \u00E9t\u00E9 calcul\u00E9e par William Shockley et Hans-Joachim Queisser au (en) en 1961. Cette limite, parmi les plus importantes \u00E0 la production d'\u00E9nergie solaire, est consid\u00E9r\u00E9e comme une des contributions scientifiques les plus importantes dans ce domaine. La limite place le maximum autour de 33,7 % en supposant une jonction pn unique avec une bande interdite de 1,34 eV (en utilisant une masse atmosph\u00E9rique, AM de 1,5). C'est-\u00E0-dire que de toute la puissance contenue dans la lumi\u00E8re solaire tombant sur une cellule solaire id\u00E9ale (environ 1 000 W m\u22122), seulement 33,7 % pourraient \u00EAtre transform\u00E9s en \u00E9lectricit\u00E9 (337 W m\u22122). Le mat\u00E9riau de cellule solaire le plus populaire, le silicium, a une bande interdite moins favorable de 1,1 eV, ce qui donne un rendement maximal d'environ 32 %. Les cellules solaires monocristallines commerciales modernes produisent environ 24 % d'efficacit\u00E9 de conversion, les pertes \u00E9tant dues en grande partie \u00E0 des probl\u00E8mes pratiques tels que la r\u00E9flexion sur la surface avant et le blocage de la lumi\u00E8re par les fils fins sur sa surface. La limite de Shockley-Queisser ne s'applique qu'aux cellules ayant une seule jonction p-n; les cellules avec plusieurs couches peuvent surpasser cette limite. \u00C0 l'extr\u00EAme, avec un nombre infini de couches, la limite correspondante est de 86,8 % en utilisant la lumi\u00E8re solaire concentr\u00E9e. (Voir )."@fr . . "\u041C\u0435\u0436\u0430 \u0428\u043E\u043A\u043B\u0456-\u041A\u0432\u0430\u0439\u0441\u0441\u0435\u0440\u0430 \u2014 \u043C\u0430\u043A\u0441\u0438\u043C\u0430\u043B\u044C\u043D\u0430 \u0442\u0435\u043E\u0440\u0435\u0442\u0438\u0447\u043D\u043E \u043C\u043E\u0436\u043B\u0438\u0432\u0430 \u0435\u0444\u0435\u043A\u0442\u0438\u0432\u043D\u0456\u0441\u0442\u044C \u0441\u043E\u043D\u044F\u0447\u043D\u0438\u0445 \u0431\u0430\u0442\u0435\u0440\u0435\u0439, \u0449\u043E \u043F\u0440\u0430\u0446\u044E\u044E\u0442\u044C \u043D\u0430 \u043E\u0434\u043D\u043E\u043C\u0443 p-n-\u043F\u0435\u0440\u0435\u0445\u043E\u0434\u0456. \u0412\u043F\u0435\u0440\u0448\u0435 \u0431\u0443\u043B\u0430 \u0440\u043E\u0437\u0440\u0430\u0445\u043E\u0432\u0430\u043D\u0430 \u0428\u043E\u043A\u043B\u0456 \u0442\u0430 \u041A\u0432\u0430\u0439\u0441\u0441\u0435\u0440\u043E\u043C \u0443 1961 \u0440\u043E\u0446\u0456. \u0414\u043B\u044F \u0442\u0438\u043F\u043E\u0432\u0438\u0445 \u0441\u043E\u043D\u044F\u0447\u043D\u0438\u0445 \u043F\u0430\u043D\u0435\u043B\u0435\u0439 \u0443 \u0442\u0438\u043F\u043E\u0432\u0438\u0445 \u0443\u043C\u043E\u0432\u0430\u0445 \u0446\u044F \u043C\u0435\u0436\u0430 \u043C\u0430\u0454 \u0437\u043D\u0430\u0447\u0435\u043D\u043D\u044F \u0431\u043B\u0438\u0437\u044C\u043A\u043E 30 %."@uk . . "Limite de Shockley-Queisser"@fr . . . "En f\u00EDsica, el l\u00EDmite Shockley-Queisser o l\u00EDmite de balance detallado designa a la m\u00E1xima eficiencia te\u00F3rica de una c\u00E9lula fotoel\u00E9ctrica basada en una uni\u00F3n p-n. El c\u00E1lculo fue desarrollado por William Shockley y en en 1961.\u200B Se le considera uno de los fundamentos b\u00E1sicos de la energ\u00EDa solar fotovoltaica y uno de los principales avances en el campo.\u200B"@es . . . . . . "En f\u00EDsica, el l\u00EDmite Shockley-Queisser o l\u00EDmite de balance detallado designa a la m\u00E1xima eficiencia te\u00F3rica de una c\u00E9lula fotoel\u00E9ctrica basada en una uni\u00F3n p-n. El c\u00E1lculo fue desarrollado por William Shockley y en en 1961.\u200B Se le considera uno de los fundamentos b\u00E1sicos de la energ\u00EDa solar fotovoltaica y uno de los principales avances en el campo.\u200B El l\u00EDmite sit\u00FAa la eficiencia m\u00E1xima en el entorno de 33,7%, asumiendo una \u00FAnica uni\u00F3n p-n con una banda prohibida de 1.34 eV (usando un espectro de 1,5 G).\u200B Es decir, de la energ\u00EDa solar incidente (t\u00EDpicamente, 1000 W/m\u00B2), solo 33,7% se podr\u00EDa convertir en electricidad (337 W/m\u00B2). El material m\u00E1s usado en c\u00E9lulas fotovoltaicas, el silicio tiene una banda a\u00FAn m\u00E1s desfavorable, de 1,1 eV, lo que rebaja el m\u00E1ximo para c\u00E9lulas comerciales al 29%. Tecnolog\u00EDas modernas como el silicio monocristalino han llegado a alcanzar eficiencias del 22%, separadas de este m\u00E1ximo solo por consideraciones pr\u00E1cticas como radiaci\u00F3n reflejada en la superficie y sombras debidas a las conexiones de la uni\u00F3n. El l\u00EDmite Shockley-Queisser aplica \u00FAnicamente a sistemas monoc\u00E9lulas. Tecnolog\u00EDas con m\u00FAltiples capas pueden sobrepasar dicha barrera. Idealmente, dispositivos con un n\u00FAmero infinito de capas pueden alcanzar rendimientos del 86% usando radiaci\u00F3n solar concentrada.\u200B"@es . . . . . . . . . . . . . . . "\u041C\u0435\u0436\u0430 \u0428\u043E\u043A\u043B\u0456 \u2014 \u041A\u0432\u0430\u0439\u0441\u0441\u0435\u0440\u0430"@uk . . . . "In physics, the radiative efficiency limit (also known as the detailed balance limit, Shockley\u2013Queisser limit, Shockley Queisser Efficiency Limit or SQ Limit) is the maximum theoretical efficiency of a solar cell using a single p-n junction to collect power from the cell where the only loss mechanism is radiative recombination in the solar cell. It was first calculated by William Shockley and Hans-Joachim Queisser at Shockley Semiconductor in 1961, giving a maximum efficiency of 30% at 1.1 eV. The limit is one of the most fundamental to solar energy production with photovoltaic cells, and is considered to be one of the most important contributions in the field."@en . . . "\u041C\u0435\u0436\u0430 \u0428\u043E\u043A\u043B\u0456-\u041A\u0432\u0430\u0439\u0441\u0441\u0435\u0440\u0430 \u2014 \u043C\u0430\u043A\u0441\u0438\u043C\u0430\u043B\u044C\u043D\u0430 \u0442\u0435\u043E\u0440\u0435\u0442\u0438\u0447\u043D\u043E \u043C\u043E\u0436\u043B\u0438\u0432\u0430 \u0435\u0444\u0435\u043A\u0442\u0438\u0432\u043D\u0456\u0441\u0442\u044C \u0441\u043E\u043D\u044F\u0447\u043D\u0438\u0445 \u0431\u0430\u0442\u0435\u0440\u0435\u0439, \u0449\u043E \u043F\u0440\u0430\u0446\u044E\u044E\u0442\u044C \u043D\u0430 \u043E\u0434\u043D\u043E\u043C\u0443 p-n-\u043F\u0435\u0440\u0435\u0445\u043E\u0434\u0456. \u0412\u043F\u0435\u0440\u0448\u0435 \u0431\u0443\u043B\u0430 \u0440\u043E\u0437\u0440\u0430\u0445\u043E\u0432\u0430\u043D\u0430 \u0428\u043E\u043A\u043B\u0456 \u0442\u0430 \u041A\u0432\u0430\u0439\u0441\u0441\u0435\u0440\u043E\u043C \u0443 1961 \u0440\u043E\u0446\u0456. \u0414\u043B\u044F \u0442\u0438\u043F\u043E\u0432\u0438\u0445 \u0441\u043E\u043D\u044F\u0447\u043D\u0438\u0445 \u043F\u0430\u043D\u0435\u043B\u0435\u0439 \u0443 \u0442\u0438\u043F\u043E\u0432\u0438\u0445 \u0443\u043C\u043E\u0432\u0430\u0445 \u0446\u044F \u043C\u0435\u0436\u0430 \u043C\u0430\u0454 \u0437\u043D\u0430\u0447\u0435\u043D\u043D\u044F \u0431\u043B\u0438\u0437\u044C\u043A\u043E 30 %."@uk . . . "43335"^^ . . "L\u00EDmite de Shockley-Queisser"@es . . . . . . . . "Ve fyzice ur\u010Duje Shockley\u016Fv\u2013Queisser\u016Fv limit teoretickou maxim\u00E1ln\u00ED \u00FA\u010Dinnost p\u0159em\u011Bny slune\u010Dn\u00EDho z\u00E1\u0159en\u00ED na elekt\u0159inu pro fotovoltaick\u00FD \u010Dl\u00E1nek s jedn\u00EDm p-n p\u0159echodem. Byl vypo\u010D\u00EDt\u00E1n v roce 1961 Williamem Shockleyem a Hansem Queisserem ze spole\u010Dnosti Shockley Semiconductor. Jedn\u00E1 se o jeden z nejd\u016Fle\u017Eit\u011Bj\u0161\u00EDch limituj\u00EDc\u00EDch faktor\u016F p\u0159i n\u00E1vrhu fotovoltaick\u00FDch \u010Dl\u00E1nk\u016F. V\u00FD\u0161e uveden\u00E9 hodnoty plat\u00ED za standardn\u00EDch testovac\u00EDch podm\u00EDnek, tj. p\u0159i teplot\u011B \u010Dl\u00E1nk\u016F 25 \u00B0C, intenzit\u011B z\u00E1\u0159en\u00ED 1000 W/m\u00B2 a spektru AM 1,5 Global. P\u0159i ni\u017E\u0161\u00EDch teplot\u00E1ch nebo vy\u0161\u0161\u00ED intenzit\u011B z\u00E1\u0159en\u00ED je teoretick\u00FD limit \u00FA\u010Dinnosti vy\u0161\u0161\u00ED."@cs . . . "Shockley-Queisser-Grenze"@de . . . "Shockley\u2013Queisser limit"@en . . "20055670"^^ . . . . . "Em f\u00EDsica, o limite Shockley\u2013Queisser ou limite de balan\u00E7o detalhado designa \u00E0 m\u00E1xima efici\u00EAncia te\u00F3rica de uma c\u00E9lula fotovoltaica baseada numa uni\u00E3o p-n. O c\u00E1lculo foi desenvolvido por William Shockley e Hans Queisser em Shockley Semiconductor em 1961. Considera-se-lhe um dos fundamentos b\u00E1sicos da energia solar fotovoltaica e um dos principais avan\u00E7os no campo. O limite situa a efici\u00EAncia m\u00E1xima no meio de 33,7%, assumindo uma \u00FAnica uni\u00E3o p-n com uma banda proibida de 1.34 eV (usando um espectro de 1,5 AM). Isto \u00E9, da energia solar incidente (tipicamente, 1000 W/m\u00B2), s\u00F3 33.7% poder-se-ia converter em electricidade (337 W/m\u00B2). O material mais usado em c\u00E9lulas fotovoltaicas, o sil\u00EDcio tem uma banda ainda mais desfavor\u00E1vel, de 1,1 eV, o que rebaxa o m\u00E1ximo para c\u00E9lulas comerciais aos 32%. Tecnologias modernas como o sil\u00EDcio monocristalino t\u00EAm chegado a atingir efici\u00EAncias de 24%, separadas deste m\u00E1ximo s\u00F3 por considera\u00E7\u00F5es pr\u00E1ticas como radia\u00E7\u00E3o refletida na superf\u00EDcie e sombras devidas \u00E0s conex\u00F5es da uni\u00E3o. O limite Shockley\u2013Queisser aplica unicamente a sistemas monoc\u00E9lulas. Tecnologias com m\u00FAltiplas capas podem ultrapassar dita barreira. Idealmente, dispositivos com um n\u00FAmero infinito de capas podem atingir rendimentos de 86% usando radia\u00E7\u00E3o solar concentrada."@pt . . . . . . "La limite de Shockley-Queisser est l'efficacit\u00E9 th\u00E9orique maximale d'une cellule photovolta\u00EFque utilisant une seule jonction P-N. Elle a d'abord \u00E9t\u00E9 calcul\u00E9e par William Shockley et Hans-Joachim Queisser au (en) en 1961. Cette limite, parmi les plus importantes \u00E0 la production d'\u00E9nergie solaire, est consid\u00E9r\u00E9e comme une des contributions scientifiques les plus importantes dans ce domaine."@fr . . . . . . . . . . . . . . . . . . . "Limite de Shockley\u2013Queisser"@pt . "In physics, the radiative efficiency limit (also known as the detailed balance limit, Shockley\u2013Queisser limit, Shockley Queisser Efficiency Limit or SQ Limit) is the maximum theoretical efficiency of a solar cell using a single p-n junction to collect power from the cell where the only loss mechanism is radiative recombination in the solar cell. It was first calculated by William Shockley and Hans-Joachim Queisser at Shockley Semiconductor in 1961, giving a maximum efficiency of 30% at 1.1 eV. The limit is one of the most fundamental to solar energy production with photovoltaic cells, and is considered to be one of the most important contributions in the field. This first calculation used the 6000K black-body spectrum as an approximation to the solar spectrum. Subsequent calculations have used measured global solar spectra, AM 1.5, and included a back surface mirror which increases the maximum solar conversion efficiency to 33.16% for a single-junction solar cell with a bandgap of 1.34 eV. That is, of all the power contained in sunlight (about 1000 W/m2) falling on an ideal solar cell, only 33.7% of that could ever be turned into electricity (337 W/m2). The most popular solar cell material, silicon, has a less favorable band gap of 1.1 eV, resulting in a maximum efficiency of about 32%. Modern commercial mono-crystalline solar cells produce about 24% conversion efficiency, the losses due largely to practical concerns like reflection off the front of the cell and light blockage from the thin wires on the cell surface. The Shockley\u2013Queisser limit only applies to conventional solar cells with a single p-n junction; solar cells with multiple layers can (and do) outperform this limit, and so can solar thermal and certain other solar energy systems. In the extreme limit, for a multi-junction solar cell with an infinite number of layers, the corresponding limit is 68.7% for normal sunlight, or 86.8% using concentrated sunlight (see solar cell efficiency)."@en . . . "\u8096\u514B\u5229-\u594E\u4F0A\u745F\u6781\u9650"@zh . . . . . "Em f\u00EDsica, o limite Shockley\u2013Queisser ou limite de balan\u00E7o detalhado designa \u00E0 m\u00E1xima efici\u00EAncia te\u00F3rica de uma c\u00E9lula fotovoltaica baseada numa uni\u00E3o p-n. O c\u00E1lculo foi desenvolvido por William Shockley e Hans Queisser em Shockley Semiconductor em 1961. Considera-se-lhe um dos fundamentos b\u00E1sicos da energia solar fotovoltaica e um dos principais avan\u00E7os no campo."@pt . . . . . . . . . "\u5728\u7269\u7406\u5B66\u4E2D\uFF0C\u8096\u514B\u5229-\u594E\u4F0A\u745F\u6781\u9650\uFF08\u4EA6\u79F0\u7EC6\u81F4\u5E73\u8861\u6781\u9650\u3001\u7CBE\u7EC6\u5E73\u8861\u8F6C\u6362\u6548\u7387\u6781\u9650\u6216SQ\u6781\u9650\uFF0C\u6216\u7269\u7406\u5B66\u540D\u8BCD\u8F90\u5C04\u6548\u7387\u6781\u9650\uFF09\u592A\u9633\u80FD\u7535\u6C60\u4F7F\u7528\u5355PN\u7ED3\u4ECE\u7535\u6C60\u4E2D\u6536\u96C6\u80FD\u91CF\u7684\u7406\u8BBA\u6700\u5927\u6548\u7387\uFF0C\u5176\u4E2D\u552F\u4E00\u7684\u635F\u5931\u673A\u5236\u662F\u592A\u9633\u80FD\u7535\u6C60\u4E2D\u7684\u8F90\u5C04\u590D\u5408\u3002\u5B83\u662F\u7531\u5A01\u5EC9\u00B7\u8096\u514B\u5229\u548CHans-Joachim Queisser\u4E8E1961\u5E74\u5728\u8096\u514B\u5229\u534A\u5BFC\u4F53\u5B9E\u9A8C\u5BA4\u9996\u6B21\u8BA1\u7B97\u51FA\u6765\u7684\uFF0C\u7ED3\u679C\u662F1.1 eV\u65F6\u6700\u9AD8\u6548\u7387\u4E3A30%\u3002\u6B64\u6781\u9650\u662F\u5229\u7528\u5149\u4F0F\u7535\u6C60\u751F\u4EA7\u592A\u9633\u80FD\u6700\u57FA\u672C\u7684\u539F\u7406\u4E4B\u4E00\uFF0C\u5E76\u88AB\u8BA4\u4E3A\u662F\u8BE5\u9886\u57DF\u6700\u91CD\u8981\u7684\u8D21\u732E\u4E4B\u4E00\u3002 \u6700\u521D\u7684\u8BA1\u7B97\u4F7F\u75286000K\u9ED1\u4F53\u5149\u8C31\u4F5C\u4E3A\u592A\u9633\u5149\u8C31\u7684\u8FD1\u4F3C\u503C\uFF0C\u968F\u540E\u7684\u8BA1\u7B97\u4F7F\u7528\u4E86\u6D4B\u91CF\u7684\u5168\u7403\u592A\u9633\u5149\u8C31AM 1.5\uFF0C\u5E76\u5305\u62EC\u4E00\u4E2A\u80CC\u9762\u53CD\u5C04\u955C\uFF0C\u5B83\u5C06\u5E26\u9699\u4E3A1.34 eV\u7684\u5355\u7ED3\u592A\u9633\u80FD\u7535\u6C60\u7684\u6700\u5927\u592A\u9633\u8F6C\u6362\u6548\u7387\u63D0\u9AD8\u523033.16%\uFF0C\u4E5F\u5C31\u662F\u8BF4\uFF0C\u6240\u6709\u843D\u5728\u7406\u60F3\u592A\u9633\u80FD\u7535\u6C60\u4E0A\u7684\u9633\u5149\uFF08\u7EA61000 W/2\uFF09\u7684\u80FD\u91CF\u4E2D\uFF0C\u53EA\u670933.7%\u80FD\u591F\u8F6C\u5316\u4E3A\u7535\u80FD(337 W/2)\u3002\u6700\u6D41\u884C\u7684\u592A\u9633\u80FD\u7535\u6C60\u6750\u6599\u7845\u7684\u5E26\u9699\u4E3A1.1 eV\uFF0C\u6548\u7387\u6700\u9AD8\u53EF\u8FBE32%\u5DE6\u53F3\u3002\u73B0\u4EE3\u5546\u7528\u5355\u6676\u592A\u9633\u80FD\u7535\u6C60\u7684\u8F6C\u6362\u6548\u7387\u7EA6\u4E3A24%\uFF0C\u8FD9\u79CD\u635F\u8017\u5F88\u5927\u7A0B\u5EA6\u4E0A\u662F\u7531\u4E8E\u5B9E\u9645\u9700\u8981\uFF0C\u6BD4\u5982\u7535\u6C60\u6B63\u9762\u7684\u53CD\u5C04\u548C\u7535\u6C60\u8868\u9762\u7EC6\u7EBF\u7684\u5149\u963B\u585E\u3002 \u8096\u514B\u5229-\u594E\u4F0A\u745F\u6781\u9650\u4EC5\u9002\u7528\u4E8E\u5355PN\u7ED3\u7684\u4F20\u7EDF\u592A\u9633\u80FD\u7535\u6C60\uFF0C\u591A\u5C42\u592A\u9633\u80FD\u7535\u6C60\u53EF\u4EE5\uFF08\u800C\u4E14\u786E\u5B9E\uFF09\u8D85\u8D8A\u8FD9\u4E00\u6781\u9650\uFF0C\u592A\u9633\u80FD\u70ED\u548C\u67D0\u4E9B\u5176\u4ED6\u592A\u9633\u80FD\u7CFB\u7EDF\u4E5F\u53EF\u4EE5\u3002\u5728\u6781\u7AEF\u6781\u9650\u4E0B\uFF0C\u5BF9\u4E8E\u5177\u6709\u65E0\u9650\u5C42\u6570\u7684\u591A\u7ED3\u592A\u9633\u80FD\u7535\u6C60\uFF0C\u6B63\u5E38\u65E5\u7167\u65F6\u7684\u6781\u9650\u4E3A68.7%\uFF0C\u805A\u5149\u65E5\u7167\u65F6\u7684\u6781\u9650\u4E3A86.8%\uFF08\u53C2\u89C1\u5149\u7535\u8F6C\u6362\u6548\u7387\uFF09\u3002"@zh . . . . . . . . . . . . "Ve fyzice ur\u010Duje Shockley\u016Fv\u2013Queisser\u016Fv limit teoretickou maxim\u00E1ln\u00ED \u00FA\u010Dinnost p\u0159em\u011Bny slune\u010Dn\u00EDho z\u00E1\u0159en\u00ED na elekt\u0159inu pro fotovoltaick\u00FD \u010Dl\u00E1nek s jedn\u00EDm p-n p\u0159echodem. Byl vypo\u010D\u00EDt\u00E1n v roce 1961 Williamem Shockleyem a Hansem Queisserem ze spole\u010Dnosti Shockley Semiconductor. Jedn\u00E1 se o jeden z nejd\u016Fle\u017Eit\u011Bj\u0161\u00EDch limituj\u00EDc\u00EDch faktor\u016F p\u0159i n\u00E1vrhu fotovoltaick\u00FDch \u010Dl\u00E1nk\u016F. Shockley\u016Fv\u2013Queisser\u016Fv limit z\u00E1vis\u00ED na \u0161\u00ED\u0159ce tzv. zak\u00E1zan\u00E9ho p\u00E1su pou\u017Eit\u00E9ho polovodi\u010De a pou\u017Eit\u00E9m spektru z\u00E1\u0159en\u00ED (spektrum slune\u010Dn\u00EDho z\u00E1\u0159en\u00ED je jin\u00E9 v kosmick\u00E9m prostoru a jin\u00E9 na zemsk\u00E9m povrchu, kde krom\u011B toho z\u00E1vis\u00ED na tom, zda je jasno nebo zata\u017Eeno). K p\u0159em\u011Bn\u011B na elekt\u0159inu je pln\u011B vyu\u017Eita pouze energie foton\u016F odpov\u00EDdaj\u00EDc\u00ED \u0161\u00ED\u0159ce zak\u00E1zan\u00E9ho p\u00E1su. Fotony s ni\u017E\u0161\u00ED energi\u00ED bu\u010F \u010Dl\u00E1nkem projdou nebo jsou v materi\u00E1lu pohlceny bez u\u017Eitku, jejich energie se p\u0159em\u011Bn\u00ED na teplo. U foton\u016F s vy\u0161\u0161\u00ED energi\u00ED je vyu\u017Eita pouze \u010D\u00E1st odpov\u00EDdaj\u00EDc\u00ED \u0161\u00ED\u0159ce zak\u00E1zan\u00E9ho p\u00E1su, p\u0159ebytek energie se rovn\u011B\u017E p\u0159em\u011Bn\u00ED na teplo. Nap\u0159\u00EDklad pro krystalick\u00FD k\u0159em\u00EDk se \u0161\u00ED\u0159kou zak\u00E1zan\u00E9ho p\u00E1su 1,1 eV je Shockley\u016Fv\u2013Queisser\u016Fv limit m\u00EDrn\u011B nad 30%. V praxi to znamen\u00E1, \u017Ee pokud dopad\u00E1 na fotovoltaick\u00FD \u010Dl\u00E1nek slune\u010Dn\u00ED z\u00E1\u0159en\u00ED o intenzit\u011B 1000 W/m\u00B2, m\u016F\u017Ee b\u00FDt na elektrickou energii p\u0159em\u011Bn\u011Bno teoreticky kolem 300 W/m\u00B2. Monokrystalick\u00E9 k\u0159em\u00EDkov\u00E9 \u010Dl\u00E1nky dos\u00E1hly laboratorn\u00ED \u00FA\u010Dinnosti 25\u00B10,5 % ji\u017E v roce 1999, v praxi dos\u00E1hly nejlep\u0161\u00ED panely s monokrystalick\u00FDmi k\u0159em\u00EDkov\u00FDmi \u010Dl\u00E1nky \u00FA\u010Dinnosti 21,4\u00B10,6 %. Rozd\u00EDl je zp\u016Fsoben zejm\u00E9na odrazem sv\u011Btla od povrchu panelu (skla), mezerami mezi jednotliv\u00FDmi \u010Dl\u00E1nky v panelu a \u010D\u00E1ste\u010Dn\u00FDm zakryt\u00EDm aktivn\u00ED plochy \u010Dl\u00E1nk\u016F sb\u011Brn\u00FDmi elektrodami. \u00DA\u010Dinnost komer\u010Dn\u00EDch panel\u016F nab\u00EDzen\u00FDch na trhu je obvykle ni\u017E\u0161\u00ED ne\u017E 20 %, hlavn\u00EDm d\u016Fvodem je, \u017Ee v\u00FDvoj se zam\u011B\u0159uje p\u0159ednostn\u011B na sn\u00ED\u017Een\u00ED jednotkov\u00E9 ceny (v K\u010D/Wp). V\u00FD\u0161e uveden\u00E9 hodnoty plat\u00ED za standardn\u00EDch testovac\u00EDch podm\u00EDnek, tj. p\u0159i teplot\u011B \u010Dl\u00E1nk\u016F 25 \u00B0C, intenzit\u011B z\u00E1\u0159en\u00ED 1000 W/m\u00B2 a spektru AM 1,5 Global. P\u0159i ni\u017E\u0161\u00EDch teplot\u00E1ch nebo vy\u0161\u0161\u00ED intenzit\u011B z\u00E1\u0159en\u00ED je teoretick\u00FD limit \u00FA\u010Dinnosti vy\u0161\u0161\u00ED. Shockley\u016Fv\u2013Queisser\u016Fv limit lze p\u0159ekonat pou\u017Eit\u00EDm v\u011Bt\u0161\u00EDho po\u010Dtu p-n p\u0159echod\u016F, p\u0159izp\u016Fsoben\u00ED spektra z\u00E1\u0159en\u00ED pou\u017Eit\u00E9mu fotovoltaick\u00E9mu \u010Dl\u00E1nku nebo zv\u00FD\u0161en\u00EDm intenzity z\u00E1\u0159en\u00ED. Nap\u0159\u00EDklad dvouvrstv\u00E9 \u010Dl\u00E1nky mohou dos\u00E1hnout teoreticky \u00FA\u010Dinnosti 42 %, t\u0159\u00EDvrstv\u00E9 49 %, limit pro nekone\u010Dn\u00FD po\u010Det vrstev je 86 %. Rekordn\u00ED dvouvrstv\u00E9 \u010Dl\u00E1nky dos\u00E1hly \u00FA\u010Dinnosti 25,8\u00B11,3 %, t\u0159\u00EDvrstv\u00E9 32,0\u00B11,5 %. Koncentr\u00E1torov\u00E9 \u010Dl\u00E1nky se vyr\u00E1b\u011Bj\u00ED jednovrstv\u00E9 i v\u00EDcevrstv\u00E9. Jednovrstv\u00E9 \u010Dl\u00E1nky z monokrystalick\u00E9ho k\u0159em\u00EDku dos\u00E1hly \u00FA\u010Dinnosti 27,6\u00B11,0 % p\u0159i 92n\u00E1sobn\u00E9 koncentraci z\u00E1\u0159en\u00ED, t\u0159\u00EDvrstv\u00E9 \u010Dl\u00E1nky dos\u00E1hly 43,5\u00B12,6 %. Mezi technologie, kter\u00E9 m\u011Bn\u00ED spektrum dopadaj\u00EDc\u00EDho z\u00E1\u0159en\u00ED pat\u0159\u00ED nap\u0159\u00EDklad termofotovoltaika."@cs . "Shockley\u016Fv\u2013Queisser\u016Fv limit"@cs . . . . . . "1110485360"^^ . . . . "Die Shockley-Queisser-Grenze, auch Shockley-Queisser-Limit, gibt in der Festk\u00F6rperphysik eine Obergrenze f\u00FCr den Wirkungsgrad, mit dem Solarzellen Sonnenlicht in elektrische Energie umwandeln k\u00F6nnen, an. William B. Shockley und Hans-Joachim Queisser betrachteten 1961 Absorption und Remission von Photonen, um daraus die Grenze abzuleiten. Das Besondere hierbei ist die rein thermodynamische Betrachtungsweise und der Idealisierung aller beteiligter K\u00F6rper als Schwarze Strahlungsk\u00F6rper."@de . "Die Shockley-Queisser-Grenze, auch Shockley-Queisser-Limit, gibt in der Festk\u00F6rperphysik eine Obergrenze f\u00FCr den Wirkungsgrad, mit dem Solarzellen Sonnenlicht in elektrische Energie umwandeln k\u00F6nnen, an. William B. Shockley und Hans-Joachim Queisser betrachteten 1961 Absorption und Remission von Photonen, um daraus die Grenze abzuleiten. Das Besondere hierbei ist die rein thermodynamische Betrachtungsweise und der Idealisierung aller beteiligter K\u00F6rper als Schwarze Strahlungsk\u00F6rper."@de . . . . "\u5728\u7269\u7406\u5B66\u4E2D\uFF0C\u8096\u514B\u5229-\u594E\u4F0A\u745F\u6781\u9650\uFF08\u4EA6\u79F0\u7EC6\u81F4\u5E73\u8861\u6781\u9650\u3001\u7CBE\u7EC6\u5E73\u8861\u8F6C\u6362\u6548\u7387\u6781\u9650\u6216SQ\u6781\u9650\uFF0C\u6216\u7269\u7406\u5B66\u540D\u8BCD\u8F90\u5C04\u6548\u7387\u6781\u9650\uFF09\u592A\u9633\u80FD\u7535\u6C60\u4F7F\u7528\u5355PN\u7ED3\u4ECE\u7535\u6C60\u4E2D\u6536\u96C6\u80FD\u91CF\u7684\u7406\u8BBA\u6700\u5927\u6548\u7387\uFF0C\u5176\u4E2D\u552F\u4E00\u7684\u635F\u5931\u673A\u5236\u662F\u592A\u9633\u80FD\u7535\u6C60\u4E2D\u7684\u8F90\u5C04\u590D\u5408\u3002\u5B83\u662F\u7531\u5A01\u5EC9\u00B7\u8096\u514B\u5229\u548CHans-Joachim Queisser\u4E8E1961\u5E74\u5728\u8096\u514B\u5229\u534A\u5BFC\u4F53\u5B9E\u9A8C\u5BA4\u9996\u6B21\u8BA1\u7B97\u51FA\u6765\u7684\uFF0C\u7ED3\u679C\u662F1.1 eV\u65F6\u6700\u9AD8\u6548\u7387\u4E3A30%\u3002\u6B64\u6781\u9650\u662F\u5229\u7528\u5149\u4F0F\u7535\u6C60\u751F\u4EA7\u592A\u9633\u80FD\u6700\u57FA\u672C\u7684\u539F\u7406\u4E4B\u4E00\uFF0C\u5E76\u88AB\u8BA4\u4E3A\u662F\u8BE5\u9886\u57DF\u6700\u91CD\u8981\u7684\u8D21\u732E\u4E4B\u4E00\u3002 \u6700\u521D\u7684\u8BA1\u7B97\u4F7F\u75286000K\u9ED1\u4F53\u5149\u8C31\u4F5C\u4E3A\u592A\u9633\u5149\u8C31\u7684\u8FD1\u4F3C\u503C\uFF0C\u968F\u540E\u7684\u8BA1\u7B97\u4F7F\u7528\u4E86\u6D4B\u91CF\u7684\u5168\u7403\u592A\u9633\u5149\u8C31AM 1.5\uFF0C\u5E76\u5305\u62EC\u4E00\u4E2A\u80CC\u9762\u53CD\u5C04\u955C\uFF0C\u5B83\u5C06\u5E26\u9699\u4E3A1.34 eV\u7684\u5355\u7ED3\u592A\u9633\u80FD\u7535\u6C60\u7684\u6700\u5927\u592A\u9633\u8F6C\u6362\u6548\u7387\u63D0\u9AD8\u523033.16%\uFF0C\u4E5F\u5C31\u662F\u8BF4\uFF0C\u6240\u6709\u843D\u5728\u7406\u60F3\u592A\u9633\u80FD\u7535\u6C60\u4E0A\u7684\u9633\u5149\uFF08\u7EA61000 W/2\uFF09\u7684\u80FD\u91CF\u4E2D\uFF0C\u53EA\u670933.7%\u80FD\u591F\u8F6C\u5316\u4E3A\u7535\u80FD(337 W/2)\u3002\u6700\u6D41\u884C\u7684\u592A\u9633\u80FD\u7535\u6C60\u6750\u6599\u7845\u7684\u5E26\u9699\u4E3A1.1 eV\uFF0C\u6548\u7387\u6700\u9AD8\u53EF\u8FBE32%\u5DE6\u53F3\u3002\u73B0\u4EE3\u5546\u7528\u5355\u6676\u592A\u9633\u80FD\u7535\u6C60\u7684\u8F6C\u6362\u6548\u7387\u7EA6\u4E3A24%\uFF0C\u8FD9\u79CD\u635F\u8017\u5F88\u5927\u7A0B\u5EA6\u4E0A\u662F\u7531\u4E8E\u5B9E\u9645\u9700\u8981\uFF0C\u6BD4\u5982\u7535\u6C60\u6B63\u9762\u7684\u53CD\u5C04\u548C\u7535\u6C60\u8868\u9762\u7EC6\u7EBF\u7684\u5149\u963B\u585E\u3002"@zh .