In mathematical analysis, Trudinger's theorem or the Trudinger inequality (also sometimes called the Moser–Trudinger inequality) is a result of functional analysis on Sobolev spaces. It is named after Neil Trudinger (and Jürgen Moser). It provides an inequality between a certain Sobolev space norm and an Orlicz space norm of a function. The inequality is a limiting case of Sobolev imbedding and can be stated as the following theorem: Let be a bounded domain in satisfying the cone condition. Let and . Set Then there exists the embedding where The space is an example of an Orlicz space.
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink | |
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
rdf:type |
|
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is dbo:knownFor of | |
is dbo:wikiPageRedirects of | |
is dbo:wikiPageWikiLink of | |
is dbp:knownFor of | |
is foaf:primaryTopic of |