An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

The Minkowski content (named after Hermann Minkowski), or the boundary measure, of a set is a basic concept that uses concepts from geometry and measure theory to generalize the notions of length of a smooth curve in the plane, and area of a smooth surface in space, to arbitrary measurable sets. It is typically applied to fractal boundaries of domains in the Euclidean space, but it can also be used in the context of general metric measure spaces. It is related to, although different from, the Hausdorff measure.

Property Value
dbo:abstract
  • The Minkowski content (named after Hermann Minkowski), or the boundary measure, of a set is a basic concept that uses concepts from geometry and measure theory to generalize the notions of length of a smooth curve in the plane, and area of a smooth surface in space, to arbitrary measurable sets. It is typically applied to fractal boundaries of domains in the Euclidean space, but it can also be used in the context of general metric measure spaces. It is related to, although different from, the Hausdorff measure. (en)
  • Ёмкость Минковского — основное понятие в геометрической теории меры, обобщающее на произвольные измеримые множества понятиядлины кривой на плоскости иплощади поверхности в пространстве. Ёмкость обычно применяется для фрактальных границ областей в евклидовом пространстве, но имеет смысл в контексте общих метрических пространств с мерой. Названа в честь Германа Минковского. (ru)
dbo:wikiPageID
  • 15667957 (xsd:integer)
dbo:wikiPageLength
  • 4408 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1053961696 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
gold:hypernym
rdf:type
rdfs:comment
  • The Minkowski content (named after Hermann Minkowski), or the boundary measure, of a set is a basic concept that uses concepts from geometry and measure theory to generalize the notions of length of a smooth curve in the plane, and area of a smooth surface in space, to arbitrary measurable sets. It is typically applied to fractal boundaries of domains in the Euclidean space, but it can also be used in the context of general metric measure spaces. It is related to, although different from, the Hausdorff measure. (en)
  • Ёмкость Минковского — основное понятие в геометрической теории меры, обобщающее на произвольные измеримые множества понятиядлины кривой на плоскости иплощади поверхности в пространстве. Ёмкость обычно применяется для фрактальных границ областей в евклидовом пространстве, но имеет смысл в контексте общих метрических пространств с мерой. Названа в честь Германа Минковского. (ru)
rdfs:label
  • Minkowski content (en)
  • Ёмкость Минковского (ru)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License