An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In algebraic geometry, Max Noether's theorem on curves is a theorem about curves lying on algebraic surfaces, which are hypersurfaces in P3, or more generally complete intersections. It states that, for degree at least four for hypersurfaces, the generic such surface has no curve on it apart from the hyperplane section. In more modern language, the Picard group is infinite cyclic, other than for a short list of degrees. This is now often called the Noether-Lefschetz theorem. * v * t * e

Property Value
dbo:abstract
  • In algebraic geometry, Max Noether's theorem on curves is a theorem about curves lying on algebraic surfaces, which are hypersurfaces in P3, or more generally complete intersections. It states that, for degree at least four for hypersurfaces, the generic such surface has no curve on it apart from the hyperplane section. In more modern language, the Picard group is infinite cyclic, other than for a short list of degrees. This is now often called the Noether-Lefschetz theorem. * v * t * e (en)
dbo:wikiPageID
  • 56052250 (xsd:integer)
dbo:wikiPageLength
  • 663 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 816982263 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In algebraic geometry, Max Noether's theorem on curves is a theorem about curves lying on algebraic surfaces, which are hypersurfaces in P3, or more generally complete intersections. It states that, for degree at least four for hypersurfaces, the generic such surface has no curve on it apart from the hyperplane section. In more modern language, the Picard group is infinite cyclic, other than for a short list of degrees. This is now often called the Noether-Lefschetz theorem. * v * t * e (en)
rdfs:label
  • Max Noether's theorem on curves (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License