dbo:abstract
|
- Mahaney's theorem is a theorem in computational complexity theory proven by Stephen Mahaney that states that if any sparse language is NP-complete, then P = NP. Also, if any sparse language is NP-complete with respect to Turing reductions, then the polynomial-time hierarchy collapses to . Mahaney's argument does not actually require the sparse language to be in NP, so there is a sparse NP-hard set if and only if P = NP. This is because the existence of an NP-hard sparse set implies the existence of an NP-complete sparse set. (en)
- En informatique théorique, et plus précisément en théorie de la complexité, le théorème de Mahaney dit que s'il existe un langage creux NP-complet, alors P = NP. Un langage creux est un langage où le nombre de mots de longueur n du langage est polynomial en n. (fr)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 1260 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
gold:hypernym
| |
rdfs:comment
|
- Mahaney's theorem is a theorem in computational complexity theory proven by Stephen Mahaney that states that if any sparse language is NP-complete, then P = NP. Also, if any sparse language is NP-complete with respect to Turing reductions, then the polynomial-time hierarchy collapses to . Mahaney's argument does not actually require the sparse language to be in NP, so there is a sparse NP-hard set if and only if P = NP. This is because the existence of an NP-hard sparse set implies the existence of an NP-complete sparse set. (en)
- En informatique théorique, et plus précisément en théorie de la complexité, le théorème de Mahaney dit que s'il existe un langage creux NP-complet, alors P = NP. Un langage creux est un langage où le nombre de mots de longueur n du langage est polynomial en n. (fr)
|
rdfs:label
|
- Théorème de Mahaney (fr)
- Mahaney's theorem (en)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |