An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Mahaney's theorem is a theorem in computational complexity theory proven by Stephen Mahaney that states that if any sparse language is NP-complete, then P = NP. Also, if any sparse language is NP-complete with respect to Turing reductions, then the polynomial-time hierarchy collapses to . Mahaney's argument does not actually require the sparse language to be in NP, so there is a sparse NP-hard set if and only if P = NP. This is because the existence of an NP-hard sparse set implies the existence of an NP-complete sparse set.

Property Value
dbo:abstract
  • Mahaney's theorem is a theorem in computational complexity theory proven by Stephen Mahaney that states that if any sparse language is NP-complete, then P = NP. Also, if any sparse language is NP-complete with respect to Turing reductions, then the polynomial-time hierarchy collapses to . Mahaney's argument does not actually require the sparse language to be in NP, so there is a sparse NP-hard set if and only if P = NP. This is because the existence of an NP-hard sparse set implies the existence of an NP-complete sparse set. (en)
  • En informatique théorique, et plus précisément en théorie de la complexité, le théorème de Mahaney dit que s'il existe un langage creux NP-complet, alors P = NP. Un langage creux est un langage où le nombre de mots de longueur n du langage est polynomial en n. (fr)
dbo:wikiPageID
  • 47241003 (xsd:integer)
dbo:wikiPageLength
  • 1260 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1118453335 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdfs:comment
  • Mahaney's theorem is a theorem in computational complexity theory proven by Stephen Mahaney that states that if any sparse language is NP-complete, then P = NP. Also, if any sparse language is NP-complete with respect to Turing reductions, then the polynomial-time hierarchy collapses to . Mahaney's argument does not actually require the sparse language to be in NP, so there is a sparse NP-hard set if and only if P = NP. This is because the existence of an NP-hard sparse set implies the existence of an NP-complete sparse set. (en)
  • En informatique théorique, et plus précisément en théorie de la complexité, le théorème de Mahaney dit que s'il existe un langage creux NP-complet, alors P = NP. Un langage creux est un langage où le nombre de mots de longueur n du langage est polynomial en n. (fr)
rdfs:label
  • Théorème de Mahaney (fr)
  • Mahaney's theorem (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License