An Entity of Type: WikicatNumbers, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In the mathematical field of set theory, a large cardinal property is a certain kind of property of transfinite cardinal numbers. Cardinals with such properties are, as the name suggests, generally very "large" (for example, bigger than the least α such that α=ωα). The proposition that such cardinals exist cannot be proved in the most common axiomatization of set theory, namely ZFC, and such propositions can be viewed as ways of measuring how "much", beyond ZFC, one needs to assume to be able to prove certain desired results. In other words, they can be seen, in Dana Scott's phrase, as quantifying the fact "that if you want more you have to assume more".

Property Value
dbo:abstract
  • En teoria de conjunts, un cardinal gran és un nombre cardinal amb alguna propietat especial que implica que la seva mida és «gran» en algun sentit. En general, l'existència d'un cardinal gran implica la consistència amb ZFC, per la qual cosa aquesta existència no pot provar-se. El salt entre els cardinals infinits «petits» i els cardinals grans és similar al salt entre els nombres naturals i els cardinals infinits. El primer cardinal infinit ℵ0 no pot aconseguir-se mitjançant el principi bàsic de generació dels nombres naturals: el pas d'un nombre al següent. Els cardinals grans inclouen entre uns altres als cardinals inaccessibles, els i els . (ca)
  • Velké kardinály či velká kardinální čísla je v teorii množin souhrnné označení pro kardinální čísla, jejichž existence je nezávislá na axiomech Zermelovy–Fraenkelovy teorie s axiomem výběru (ZFC). Existence či neexistence každého z těchto čísel má v ZF závažné důsledky týkající se zejména nekonečné kombinatoriky. Často však přijetí axiomu postulujícího existenci nějakého velkého kardinálu zásadně ovlivňuje vlastnosti o kardinálech malých ( …). (cs)
  • In der Mengenlehre wird eine Kardinalzahl als große Kardinalzahl bezeichnet, wenn ihre Existenz erwiesenermaßen nicht mit den üblichen Axiomen der Zermelo-Fraenkel-Mengenlehre (ZFC) bewiesen werden kann. Nimmt man die Aussage, dass eine große Kardinalzahl mit einer bestimmten Eigenschaft existiert, als neues Axiom zu ZFC hinzu, erhält man eine stärkere Theorie, in der einige der in ZFC unentscheidbaren Sätze entschieden werden können. Diese Große-Kardinalzahl-Axiome spielen deshalb in der modernen Mengenlehre eine wichtige Rolle. (de)
  • In the mathematical field of set theory, a large cardinal property is a certain kind of property of transfinite cardinal numbers. Cardinals with such properties are, as the name suggests, generally very "large" (for example, bigger than the least α such that α=ωα). The proposition that such cardinals exist cannot be proved in the most common axiomatization of set theory, namely ZFC, and such propositions can be viewed as ways of measuring how "much", beyond ZFC, one needs to assume to be able to prove certain desired results. In other words, they can be seen, in Dana Scott's phrase, as quantifying the fact "that if you want more you have to assume more". There is a rough convention that results provable from ZFC alone may be stated without hypotheses, but that if the proof requires other assumptions (such as the existence of large cardinals), these should be stated. Whether this is simply a linguistic convention, or something more, is a controversial point among distinct philosophical schools (see below). A large cardinal axiom is an axiom stating that there exists a cardinal (or perhaps many of them) with some specified large cardinal property. Most working set theorists believe that the large cardinal axioms that are currently being considered are consistent with ZFC. These axioms are strong enough to imply the consistency of ZFC. This has the consequence (via Gödel's second incompleteness theorem) that their consistency with ZFC cannot be proven in ZFC (assuming ZFC is consistent). There is no generally agreed precise definition of what a large cardinal property is, though essentially everyone agrees that those in the list of large cardinal properties are large cardinal properties. (en)
  • En teoría de conjuntos, un cardinal grande es un número cardinal con alguna propiedad especial que implica que su tamaño es «grande» en algún sentido. En general, la existencia de un cardinal grande implica la consistencia con ZFC, por lo que dicha existencia no puede probarse. El salto entre los cardinales infinitos «pequeños» y los cardinales grandes es similar al salto entre los números naturales y los cardinales infinitos. El primer cardinal infinito ℵ0 no puede alcanzarse mediante el principio básico de generación de los números naturales: el paso de un número al siguiente. Los cardinales grandes incluyen entre otros a los cardinales inaccesibles, los cardinales de Mahlo y los . (es)
  • En mathématiques, et plus précisément en théorie des ensembles, un grand cardinal est un nombre cardinal transfini satisfaisant une propriété qui le distingue des ensembles constructibles avec l'axiomatique usuelle (ZFC) tels que ℵ0, ℵω, etc., et le rend nécessairement plus grand que tous ceux-ci. L'existence d'un grand cardinal est donc soumise à l'acceptation de nouveaux axiomes. (fr)
  • In de verzamelingenleer, een deelgebied van de wiskunde, is een groot kardinaalgetal een bepaalde eigenschap van transfiniete kardinaalgetallen. Kardinalen met zulke eigenschappen zijn, zoals de naam al doet vermoeden, over het algemeen zeer "groot" (bijvoorbeeld groter dan , groter dan de kardinaliteit van het continuüm, enz.). De bewering dat dergelijke kardinalen bestaan, kan in de meest voorkomende axiomatisering van de verzamelingenleer, de Zermelo-Fraenkel-verzamelingenleer, niet worden bewezen. Dergelijke beweringen kunnen worden gezien als manieren om te meten hoe "veel", men naast de ZFC, nog moet veronderstellen om in staat te zijn om bepaalde gewenste resultaten te bewijzen. In de woorden van de Amerikaanse wiskundige Dana Scott kunnen zij worden gezien als de kwantificatie van het feit "dat als men meer wil [bewijzen], men meer moet veronderstellen" (nl)
  • 집합론에서 큰 기수(큰基數, 영어: large cardinal)는 집합론의 표준적인 공리계(선택 공리를 추가한 체르멜로-프렝켈 집합론)로는 그 존재를 증명할 수 없는 매우 큰 기수이다. (ko)
  • 巨大基数(きょだいきすう、英: large cardinal)とは、数学の集合論におけるが有するある種の性質。この性質を持つ基数は、その名の通り、一般に大変「大きい」(例えば、α=ωαを満たすような最小の基数αよりも大きい)。そのような基数が存在するという命題は、集合論における最も標準的な公理系である ZFC からは証明できない。このことから、そのような命題は、何らかの望ましい結果を証明できるようになる上で ZFC を超えてどのぐらいの「量」の仮定を加えなければならないのかを測るある種の尺度になっている。別の言い方をすれば、デイナ・スコットが述べたように、巨大基数的性質は「より多くを求めるなら、より多くを仮定しなければならない」という事実を定量的に表現しているとみなせる。 大まかな約束事として、ZFCだけから結果を証明できる場合は特段の断り書きは要らないが、もしその他の主張(例えば巨大基数の存在など)が証明上必要なら、そのことは明記されねばならない。これが単なる慣習的な決まり事なのか、それとも何か本質的な意味があるのかは、諸学派の間で議論の的となっている(後述のを参照)。 巨大基数公理とは、巨大基数的性質を持った何かしらの基数が一つ(または多数)存在すると述べる公理である。 集合論学者の間では、既知の巨大基数公理はZFCと無矛盾だと概ね信じられている。これらの巨大基数公理を仮定するとZFCの無矛盾性を証明できる。このため、ゲーデルの第二不完全性定理により、(ZFCが無矛盾だとして)「ZFC+巨大基数公理」の無矛盾性をZFCの中で証明することはできない。 巨大基数的性質とは何かということに関しては、一般に合意された正確な定義というものは存在しないが、巨大基数的性質の一覧に載っているものが巨大基数であることは本質的に誰もが同意している。 (ja)
  • Em matemática, especialmente na área da teoria dos conjuntos, uma propriedade de grande cardinal é um certo tipo de propriedade de números cardinais transfinitos. Falando intuitivamente, cardinais com tais propriedades, como o nome sugere, são muito grandes: maiores que (a cardinalidade dos números naturais), maiores que (a cardinalidade do contínuo), maiores que , etc. (pt)
  • Stora kardinaltal är inom matematiken och mängdteorin en samlingsbeteckning på alla slags kardinaltal vars existens ej följer ur Zermelo–Fraenkels mängdteori (ZFC), förutsatt att ZFC är konsistent). Det finns olika typer av stora kardinaltal, exempelvis , , , och . Ouppnåeliga kardinaltal är en typ av stora kardinaltal. (sv)
  • Duże liczby kardynalne – liczby kardynalne, których istnienia nie można udowodnić na gruncie aksjomatyki Zermela-Fraenkla (ZFC), i ponadto takie, dla których niesprzeczność istnienia nie wynika z niesprzeczności ZFC, a jednocześnie można wykazać niesprzeczność nieistnienia tych liczb. Ściśle mówiąc, rozważa się różne własności liczb kardynalnych (i duże liczby to liczby kardynalne mające pewne z tych własności). Postulaty, że istnieją liczby kardynalne spełniające określonego rodzaju własności dużych liczb, noszą wspólną nazwę aksjomatów dużych liczb. (pl)
  • У математичній області теорії множин велика кардинальна властивість — певний вид властивості трансфінітних кардинальних чисел. Кардинали з такими властивостями, як і передбачає назва, як правило, дуже великі (наприклад, більше, ніж потужність континууму). Припущення, що такі кардинали існують, не може бути доведене в самій загальній аксіоматиці теорії множин і такі пропозиції можна розглядати як спосіб вимірювання як багато потрібно припустити, щоб бути в змозі довести деякі бажані результати. Іншими словами, вони можуть бути продемонстровані висловом Дана Скотта: «Якщо ви хочете більше, ви повинні взяти на себе більше». Аксіома великих кардинальних чисел — це аксіома про те, що існує кардинальне число (або, можливо, багато які з них) з деякою зазначеною вище великою кардинальною властивістю. Не існує в цілому з'ясованого точного визначення того, що велика кардинальна властивість являє собою насправді, хоча по суті всі згодні з тим, що абсолютно вірно описує ці властивості. (uk)
  • 在集合論,大基數性質是超限基數可能具有的若干性質的統稱。顧名思義,有某種大基數性質的基數(大基數)一般都很「大」(例如,比滿足的最小的更大,其中的意義見阿列夫數)。大基數的存在性不能用最常見的ZFC集合論公理系統證明,所以,若需要大基數才能證明某些結論,則可用所需的大基數來衡量該結論「超出」ZFC的程度。其如達納·斯科特所言,量化了「欲證更多,必先假設更多」。 常見大基數類別有不可达基数、、和可测基数等,其中可测基数和拉姆齊基数都比弱紧基数强,而若假定選擇公理,弱紧基数是不可达基数。 集合論界中有以下粗略約定:ZFC足以證明的結論敍述時不用列明前提「假設ZFC」,但若證明要求其他假設(例如存在某個大基數),則須列明。視乎哲學派別,或認為該約定僅是語言慣例,或認為其意義更重大(見一節)。 大基數公理是斷言特定大基數存在的公理。例如,「存在3個不可達基數」便屬大基數公理。 許多集合論者相信現時考慮的大基數公理皆與ZFC相容。該些公理足以推出ZFC相容,因此ZFC(若相容)無法證明該些公理與ZFC相容,否則ZFC將證明自身的相容性,與哥德爾第二不完備定理矛盾。 並無準確定義何種性質為大基數性質,但列舉了若干較普遍接受的大基數性質。 (zh)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 383644 (xsd:integer)
dbo:wikiPageLength
  • 10383 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1112836163 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • Velké kardinály či velká kardinální čísla je v teorii množin souhrnné označení pro kardinální čísla, jejichž existence je nezávislá na axiomech Zermelovy–Fraenkelovy teorie s axiomem výběru (ZFC). Existence či neexistence každého z těchto čísel má v ZF závažné důsledky týkající se zejména nekonečné kombinatoriky. Často však přijetí axiomu postulujícího existenci nějakého velkého kardinálu zásadně ovlivňuje vlastnosti o kardinálech malých ( …). (cs)
  • In der Mengenlehre wird eine Kardinalzahl als große Kardinalzahl bezeichnet, wenn ihre Existenz erwiesenermaßen nicht mit den üblichen Axiomen der Zermelo-Fraenkel-Mengenlehre (ZFC) bewiesen werden kann. Nimmt man die Aussage, dass eine große Kardinalzahl mit einer bestimmten Eigenschaft existiert, als neues Axiom zu ZFC hinzu, erhält man eine stärkere Theorie, in der einige der in ZFC unentscheidbaren Sätze entschieden werden können. Diese Große-Kardinalzahl-Axiome spielen deshalb in der modernen Mengenlehre eine wichtige Rolle. (de)
  • En mathématiques, et plus précisément en théorie des ensembles, un grand cardinal est un nombre cardinal transfini satisfaisant une propriété qui le distingue des ensembles constructibles avec l'axiomatique usuelle (ZFC) tels que ℵ0, ℵω, etc., et le rend nécessairement plus grand que tous ceux-ci. L'existence d'un grand cardinal est donc soumise à l'acceptation de nouveaux axiomes. (fr)
  • 집합론에서 큰 기수(큰基數, 영어: large cardinal)는 집합론의 표준적인 공리계(선택 공리를 추가한 체르멜로-프렝켈 집합론)로는 그 존재를 증명할 수 없는 매우 큰 기수이다. (ko)
  • Em matemática, especialmente na área da teoria dos conjuntos, uma propriedade de grande cardinal é um certo tipo de propriedade de números cardinais transfinitos. Falando intuitivamente, cardinais com tais propriedades, como o nome sugere, são muito grandes: maiores que (a cardinalidade dos números naturais), maiores que (a cardinalidade do contínuo), maiores que , etc. (pt)
  • Stora kardinaltal är inom matematiken och mängdteorin en samlingsbeteckning på alla slags kardinaltal vars existens ej följer ur Zermelo–Fraenkels mängdteori (ZFC), förutsatt att ZFC är konsistent). Det finns olika typer av stora kardinaltal, exempelvis , , , och . Ouppnåeliga kardinaltal är en typ av stora kardinaltal. (sv)
  • Duże liczby kardynalne – liczby kardynalne, których istnienia nie można udowodnić na gruncie aksjomatyki Zermela-Fraenkla (ZFC), i ponadto takie, dla których niesprzeczność istnienia nie wynika z niesprzeczności ZFC, a jednocześnie można wykazać niesprzeczność nieistnienia tych liczb. Ściśle mówiąc, rozważa się różne własności liczb kardynalnych (i duże liczby to liczby kardynalne mające pewne z tych własności). Postulaty, że istnieją liczby kardynalne spełniające określonego rodzaju własności dużych liczb, noszą wspólną nazwę aksjomatów dużych liczb. (pl)
  • 在集合論,大基數性質是超限基數可能具有的若干性質的統稱。顧名思義,有某種大基數性質的基數(大基數)一般都很「大」(例如,比滿足的最小的更大,其中的意義見阿列夫數)。大基數的存在性不能用最常見的ZFC集合論公理系統證明,所以,若需要大基數才能證明某些結論,則可用所需的大基數來衡量該結論「超出」ZFC的程度。其如達納·斯科特所言,量化了「欲證更多,必先假設更多」。 常見大基數類別有不可达基数、、和可测基数等,其中可测基数和拉姆齊基数都比弱紧基数强,而若假定選擇公理,弱紧基数是不可达基数。 集合論界中有以下粗略約定:ZFC足以證明的結論敍述時不用列明前提「假設ZFC」,但若證明要求其他假設(例如存在某個大基數),則須列明。視乎哲學派別,或認為該約定僅是語言慣例,或認為其意義更重大(見一節)。 大基數公理是斷言特定大基數存在的公理。例如,「存在3個不可達基數」便屬大基數公理。 許多集合論者相信現時考慮的大基數公理皆與ZFC相容。該些公理足以推出ZFC相容,因此ZFC(若相容)無法證明該些公理與ZFC相容,否則ZFC將證明自身的相容性,與哥德爾第二不完備定理矛盾。 並無準確定義何種性質為大基數性質,但列舉了若干較普遍接受的大基數性質。 (zh)
  • En teoria de conjunts, un cardinal gran és un nombre cardinal amb alguna propietat especial que implica que la seva mida és «gran» en algun sentit. En general, l'existència d'un cardinal gran implica la consistència amb ZFC, per la qual cosa aquesta existència no pot provar-se. (ca)
  • En teoría de conjuntos, un cardinal grande es un número cardinal con alguna propiedad especial que implica que su tamaño es «grande» en algún sentido. En general, la existencia de un cardinal grande implica la consistencia con ZFC, por lo que dicha existencia no puede probarse. (es)
  • In the mathematical field of set theory, a large cardinal property is a certain kind of property of transfinite cardinal numbers. Cardinals with such properties are, as the name suggests, generally very "large" (for example, bigger than the least α such that α=ωα). The proposition that such cardinals exist cannot be proved in the most common axiomatization of set theory, namely ZFC, and such propositions can be viewed as ways of measuring how "much", beyond ZFC, one needs to assume to be able to prove certain desired results. In other words, they can be seen, in Dana Scott's phrase, as quantifying the fact "that if you want more you have to assume more". (en)
  • 巨大基数(きょだいきすう、英: large cardinal)とは、数学の集合論におけるが有するある種の性質。この性質を持つ基数は、その名の通り、一般に大変「大きい」(例えば、α=ωαを満たすような最小の基数αよりも大きい)。そのような基数が存在するという命題は、集合論における最も標準的な公理系である ZFC からは証明できない。このことから、そのような命題は、何らかの望ましい結果を証明できるようになる上で ZFC を超えてどのぐらいの「量」の仮定を加えなければならないのかを測るある種の尺度になっている。別の言い方をすれば、デイナ・スコットが述べたように、巨大基数的性質は「より多くを求めるなら、より多くを仮定しなければならない」という事実を定量的に表現しているとみなせる。 大まかな約束事として、ZFCだけから結果を証明できる場合は特段の断り書きは要らないが、もしその他の主張(例えば巨大基数の存在など)が証明上必要なら、そのことは明記されねばならない。これが単なる慣習的な決まり事なのか、それとも何か本質的な意味があるのかは、諸学派の間で議論の的となっている(後述のを参照)。 巨大基数公理とは、巨大基数的性質を持った何かしらの基数が一つ(または多数)存在すると述べる公理である。 (ja)
  • In de verzamelingenleer, een deelgebied van de wiskunde, is een groot kardinaalgetal een bepaalde eigenschap van transfiniete kardinaalgetallen. Kardinalen met zulke eigenschappen zijn, zoals de naam al doet vermoeden, over het algemeen zeer "groot" (bijvoorbeeld groter dan , groter dan de kardinaliteit van het continuüm, enz.). De bewering dat dergelijke kardinalen bestaan, kan in de meest voorkomende axiomatisering van de verzamelingenleer, de Zermelo-Fraenkel-verzamelingenleer, niet worden bewezen. Dergelijke beweringen kunnen worden gezien als manieren om te meten hoe "veel", men naast de ZFC, nog moet veronderstellen om in staat te zijn om bepaalde gewenste resultaten te bewijzen. In de woorden van de Amerikaanse wiskundige Dana Scott kunnen zij worden gezien als de kwantificatie van (nl)
  • У математичній області теорії множин велика кардинальна властивість — певний вид властивості трансфінітних кардинальних чисел. Кардинали з такими властивостями, як і передбачає назва, як правило, дуже великі (наприклад, більше, ніж потужність континууму). Припущення, що такі кардинали існують, не може бути доведене в самій загальній аксіоматиці теорії множин і такі пропозиції можна розглядати як спосіб вимірювання як багато потрібно припустити, щоб бути в змозі довести деякі бажані результати. Іншими словами, вони можуть бути продемонстровані висловом Дана Скотта: «Якщо ви хочете більше, ви повинні взяти на себе більше». (uk)
rdfs:label
  • Cardinal gran (ca)
  • Velké kardinály (cs)
  • Große Kardinalzahl (de)
  • Cardinal grande (es)
  • Grand cardinal (fr)
  • Large cardinal (en)
  • 巨大基数 (ja)
  • 큰 기수 (ko)
  • Groot kardinaalgetal (nl)
  • Duże liczby kardynalne (pl)
  • Propriedade de grande cardinal (pt)
  • Stora kardinaltal (sv)
  • Великі кардинальні числа (uk)
  • 大基数 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is rdfs:seeAlso of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License