An Entity of Type: musical work, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In theoretical physics, the composition of two non-collinear Lorentz boosts results in a Lorentz transformation that is not a pure boost but is the composition of a boost and a rotation. This rotation is called Thomas rotation, Thomas–Wigner rotation or Wigner rotation. The rotation was discovered and proved by Ludwik Silberstein in his 1914 book 'Relativity', rediscovered by Llewellyn Thomas in 1926, and rederived by Wigner in 1939. Wigner acknowledged Silberstein. If a sequence of non-collinear boosts returns an object to its initial velocity, then the sequence of Wigner rotations can combine to produce a net rotation called the Thomas precession.

Property Value
dbo:abstract
  • In theoretical physics, the composition of two non-collinear Lorentz boosts results in a Lorentz transformation that is not a pure boost but is the composition of a boost and a rotation. This rotation is called Thomas rotation, Thomas–Wigner rotation or Wigner rotation. The rotation was discovered and proved by Ludwik Silberstein in his 1914 book 'Relativity', rediscovered by Llewellyn Thomas in 1926, and rederived by Wigner in 1939. Wigner acknowledged Silberstein. If a sequence of non-collinear boosts returns an object to its initial velocity, then the sequence of Wigner rotations can combine to produce a net rotation called the Thomas precession. There are still ongoing discussions about the correct form of equations for the Thomas rotation in different reference systems with contradicting results. Goldstein: The spatial rotation resulting from the successive application of two non-collinear Lorentz transformations have been declared every bit as paradoxical as the more frequently discussed apparent violations of common sense, such as the twin paradox. Einstein's principle of velocity reciprocity (EPVR) reads We postulate that the relation between the coordinates of the two systems is linear. Then the inverse transformation is also linear and the complete non-preference of the one or the other system demands that the transformation shall be identical with the original one, except for a change of v to −v With less careful interpretation, the EPVR is seemingly violated in some models. There is, of course, no true paradox present. Let it be u the velocity in which the lab reference frame moves respect an object called A and let it be v the velocity in which another object called B is moving, measured from the lab reference frame. If u and v are not aligned the relative velocities of these two bodies will not be opposite, that is since there is a rotation between them The velocity that A will measure on B will be: The Lorentz factor for the velocities that either A sees on B or B sees on A: The angle of rotation can be calculated in two ways: Or: And the axis of rotation is: (en)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 24293838 (xsd:integer)
dbo:wikiPageLength
  • 42760 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1114517950 (xsd:integer)
dbo:wikiPageWikiLink
dbp:text
  • The decomposition process described can be carried through on the product of two pure Lorentz transformations to obtain explicitly the rotation of the coordinate axes resulting from the two successive "boosts". In general, the algebra involved is quite forbidding, more than enough, usually, to discourage any actual demonstration of the rotation matrix (en)
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In theoretical physics, the composition of two non-collinear Lorentz boosts results in a Lorentz transformation that is not a pure boost but is the composition of a boost and a rotation. This rotation is called Thomas rotation, Thomas–Wigner rotation or Wigner rotation. The rotation was discovered and proved by Ludwik Silberstein in his 1914 book 'Relativity', rediscovered by Llewellyn Thomas in 1926, and rederived by Wigner in 1939. Wigner acknowledged Silberstein. If a sequence of non-collinear boosts returns an object to its initial velocity, then the sequence of Wigner rotations can combine to produce a net rotation called the Thomas precession. (en)
rdfs:label
  • Wigner rotation (en)
owl:differentFrom
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License