dbo:abstract
|
- Transverse relaxation optimized spectroscopy (TROSY) is an experiment in protein NMR spectroscopy that allows studies of large molecules or complexes. The application of NMR to large molecules is normally limited by the fact that the line widths generally increase with molecular mass. Larger molecules have longer rotational correlation times and consequently shorter transverse relaxation times (T2). In other words, the NMR signal from larger molecules decays more rapidly, leading to line broadening in the NMR spectrum and poor resolution. In an HSQC spectrum in which decoupling has not been applied, peaks appear as multiplets due to J-coupling. Crucially the different multiplet components have different widths. This is due to constructive or destructive interaction between different relaxation mechanisms. Typically for large proteins at high magnetic field strengths, the transverse (T2) relaxation is dominated by the dipole-dipole (DD) mechanism and the chemical shift anisotropy (CSA) mechanism. As the relaxation mechanisms are generally correlated but contribute to the overall relaxation rate of a given component with different signs, the multiplet components relax with very different overall rates. The TROSY experiment is designed to select the component for which the different relaxation mechanisms have almost cancelled, leading to a single, sharp peak in the spectrum. This significantly increases both spectral resolution and sensitivity, both of which are at a premium when studying large and complex biomolecules. This approach significantly extends the molecular mass range that can be studied by NMR, but it generally requires high magnetic fields to achieve the necessary balance between the CSA and DD relaxation mechanisms; CSAs scale with field strength, while dipole-dipole couplings are field-independent. (en)
- TROSY (Transverse relaxation optimized spectroscopy) — метод двумерной (2D) спектроскопии ЯМР, применяемый при изучении белков, для увеличения чувствительности и спектрального разрешения. Этот метод позволяет изучать большие молекулы и молекулярные комплексы. Применение ЯМР-спектроскопии для исследования больших молекул ограничено уширением спектральных линий, происходящем с ростом молекулярной массы.Большие молекулы имеют большие времена корреляции вращательного движения и, соответственно, короткие времена поперечной релаксации (Т2). Другими словами, сигналы ЯМР больших молекул спадают быстрее, что приводит к уширению линий и плохому разрешению. Вследствие непрямого диполь-дипольного взаимодействия, в отсутствии декаплинга пики на спектрах появляются в виде мультиплетов. Принципиально разные компоненты мультиплетов имеют различную ширину. Это происходит из-за конструктивного или деструктивного взаимодействия различных механизмов релаксации. Обычно в спектрах больших белков в высоких магнитных полях эффект поперечной релаксации (Т2) преобладает над диполь-дипольным (ДД) механизмом релаксации и механизмом анизотропии химических сдвигов (АХС). Механизмы релаксации обычно взаимосвязаны, но вклад в общую скорость релаксации от каждого компонента имеет свой знак, поэтому порядок релаксации разных компонентов мультиплетов различается. Эксперимент TROSY создан для того, чтобы выбрать компоненты, для которых различные механизмы релаксации почти удалены, в результате чего сигналы на спектре оказываются узкими. Это приводит к значительному повышению как спектрального разрешения, так и чувствительности, что крайне важно при изучении больших и сложных биомолекул. Такой подход значительно расширяет диапазон молекулярных масс белков, которые могут быть изучены методом ЯМР, однако для достижения необходимого баланса между анизотропией химических сдвигов и диполь-дипольным механизмом релаксации, для проведения эксперименов TROSY, как правило, требуются высокие магнитные поля; диапазон анизотропии химических сдвигов меняется с напряженностью поля, в то время как константы диполь-дипольного взаимодействия от напряженности поля не зависят. (ru)
|